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PREFACE

The name of the great scientist K. E. Tsiolkovskiy is well known

both in this country and abroad. Today, his original research, in the

course of which he not only predicted the development of jet aircraft

and long-range rockets but theoretically confirmed their feasibility,

is necessarily of great interest to the entire aerospace community.

He was the founder of the science of astronautics (cosmonautics),

which is concerned with the problems of interplanetary travel, and he

derived the classical formulas of rocket flight.

Long before the first jet aircraft were actually built, he had

prepared sketches and worked out the theory. K. E. Tsiolkovskiy was

much preoccupied with the problems of constructing metal dirigibles

and put forward a series of original designs. He also pointed out

the economies of building large airships. Tsiolkovskiy was a pioneer

in the field of experimental aerodynamics. In 1897 in Kaluga he

built one of the world's first wind tunnels and for five years he used

it consistently to investigate models of airfoils, dirigibles, various

geometrical shapes, etc. His powers of analysis and theoretical

reasoning enabled Tsiolkovskiy to derive a number of highly important

laws of aerodynamics. This work was highly valued by N. Ye. Zhukovskiy.

In his "Aeroplan, ill ptitsepodobnaya (aviatsionnaya) letatel'-

naya mashina" (The Aeroplane, or Bird-Like (Aerial) Flying Machine),

1894", Tsiolkovskiy produced the first aerodynamic aircraft design

and proposed a workable scheme for an airplane, far in advance of con-

temporary work in other countries. His proposals became the basis

for the construction of the aircraft of those times -- a monoplane

with unbraced streamlined wings, wheeled landing gear, and coaxial

rotation of the propellers. In the same paper he also proposed for

the first time an electrically driven gyroscopic autopilot for the

elevators.

In addition to his engineering and technical studies, Tsiol-

kovskiy wrote a series of papers on the problems of natural science.

Most of them reflect his materialistic views of nature, of the struc-

ture of the cosmos, and of the future of mankind.

Before the Revolution Tsiolkovskiy led a difficult life. A

self-taught man, half-deaf since childhood, he had to pursue his

studies alone relying on his own unaided resources. He was plagued

*Nauka i zhizn' (Science and Life), No. 43-46, 1894.
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by poverty for most of his life. Only under Soviet rule did he receive

the recognition, care and attention that he deserved.

Although his health was strongly undermined by the privations

and hardships of the pre-Revolutionary period, he worked with exception-

al zeal and productivity. Whereas during a period of 26 years before

the Revolution his publications numbered less than 50 (with about 80

papers in manuscript form), under Soviet rule more than 20 papers (most

of which he prepared for publication) issued annually from his pen.

In 1934 two volumes of his "Izbrannyye trudy" (Selected Works) on all-

metal dirigibles and reaction propulsion appeared. His work is perme-

ated with boldness of spirit and faith in the bright future of humanity.

K. E. Tsiolkovskiy worked long and fruitfully for the good of

the Socialist Homeland, the Soviet State, which provided him with all

the amenities needed for this purpose. In 1932, on his 75th birthday_

the Government bestowed on him a distinguished award_ the Order of

Labor Red Banner, for his scientific work and inventions.

Before his death_ in a letter addressed to Comrade I. V. Stalin_

he bequeathed all his life-work to "the party of the Bolsheviks and
the Soviet authorities -- the true leaders of civilization."

The great leader of our nation I. V. Stalin sent him a warm

reply in which he thanked Tsiolkovskiy for his accomplishments in be-

half of the Homeland.

Tsiolkovskiy's works have repeatedly been published in new

editions, but only in an incomplete_ poorly organized form.
In connection with the decision of the Government to transfer

the entire archives on K. E. Tsiolkovskiy to the Academy of Sciences

USSR, a committee for editing his work and preparing it for publica-

tion was established under the Department of Technical Sciences of

the Academy. It has scheduled the publication of the material by

volumes: Volume I. Aerodynamics, Volume II. Reaction Propulsion_

Volume III. K. E. Tsiolkovskiy's Inventions and Miscellaneous Works,

Volume IV. Problems of Natural Science, Volume V. The Autobiography

of K. E. Tsiolkovskiy. Biographical Data. Correspondence. Bibli-

ography.

In addition_ a special volume containing Tsiolkovskiy's popular

writings and science fiction will be published separately. It will

contain certain material that has never been published before.

May this entire publishing project be another memorial to the

accomplishments of the scientific genius who anticipated the de-

velopment of present-day technology and contributed so much to it in

his work!

Academician B. Yur'yev
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K. E. Tsiolkovskiy and his Works on Aerodynamics

The problems of aerodynamics held considerable interest for

K. E. Tsiolkovskiy throughout his many-sided life as a scientist.

His first work connected with the problems of aerodynamics ("The

Theoretical and Practical Aspects of an Aerostat with a Shape Elon-

gated in the Horizontal Direction") was published in 1885 and his

last ("The Pressure on a Plane in a Normal Flow") appeared in 1934.

In the course of the intervening 20 years Tsiolkovskiy returned re-

peatedly to the study of aerodynamics, a subject to which he devoted

a considerable portion of his time.

For Tsiolkovskiy aerodynamics was not merely of theoretical

interest. As distinct from many of the early investigators, who

based their designs for flying machines on guesses and assumptions_

the great Russian scientist clearly understood that without reliable

knowledge concerning the nature of drag_ lift, and other character-

istics of the interaction between an aircraft and the surrounding

medium no progress would be possible either in aviation or in aero-

nautics. He repeatedly stressed the practical value of the laws of

aerodynamics that he established, and he himself gave some excellent

examples of their application to the design of aircraft and dirigibles.

In his creative work in the field of aerodynamics, Tsiolkovskiy

always subjected his theoretical results to experimental verification.

Whenever he introduced any assumption, it was always with the reser=

vation that this assumption and the conclusions derivable from it

were only valid to the extent that they could be justified by experi-
ment.

Tsiolkovskiy was a great master of the art of experimentation.

He knew how to set up an experiment so as to get a clear answer to a

specific question with the maximum simplicity and economy. Moreover,

he was an indefatigable experimenter_ exhausting all the possible

variations of the experimental parameters. However_ he never left

his experimental results in the form of a random accumulation of

facts; he always sought shd, with striking intuition, invariably

found general theoretical relations between the quantities observed.

Such are the typical features of the aerodynamic investigations

of K. E. Tsiolkovskiy, one of the founders of modern aerodynamics.

The first of Tsiolkovskiy's works wholly devoted to the prob-

lems of aerodynamics: "On the Problem of Winged Flight" was written

in 1890/91. In this paper he employed completely original and inde-



pendent methods to study the air pressure on a flat plate.

He based the theoretical part of this investigation on the

following general picture of the displacement of the fluid particles

when a plate moves in a direction perpendicular to its own plane:

"The greatest velocity_" he _rites, "is acquired by the particles

lying close to the moving plate; the direction of motion of the
particles in front of and behind the plate is the same: the particles

in front are driven ahead, those behind are dragged in the same di-

rection. The particles lying close to the plate push against those

lying further away, but since the space or, as it were, the channel

gradually expands, the velocity of the particles decreases the fur-
ther they are from the moving plate. $imilarly_ the particles behind

the plate entrain the part of the air lying behind them_ the velocity

diminishing in the same proportion. Finally, the line of motion of

the particles in front of and behind the plate constitutes a single
closed curve, so that the fluid particles in front of the plate are

directed along these curves beyond the plate. "

This picture is considerably closer to reality than that based

on the Newtonian impact theory generally accepted at that time. The

above quotation illustrates the remarkable clarity of Tsiolkovskiy's

fundamental physical concepts.

Apart from the question of the fluid pressure on a flat plate

moving in a direction perpendicular to its own plane_ Tsiolkovskiy
offers a theoretical solution of the problem of the pressure on a

similar plate moving simultaneously in two directions: perpendicular

to and parallel to its own plane. He explains that the pressure is

proportional to the sine of the angle of attack; as is known, at

small angles of attack this is completely in accordance with the

facts. But perhaps the most interesting and valuable result obtained

by Tsiolkovskiy in his first published contribution to aerodynamics

consists in his explanation of the effect on the pressure of the

aspect ratio of the plate. He established theoretically that, other

things being equal, the pressure exerted on the plate by the flow is

proportional to the square root of the aspect ratio. This remarkable
law anticipated the subsequent development of airfoil theory by about

30 years. Tsiolkovskiy was the first aerodynamicist to draw atten-

tion to the significance of the aspect ratio of aircraft wings, ex-

plain the reason for the elongated form of the wings of birds and in-

sects, and give a relation between lift and aspect ratio qualitatively
close to that established by modern airfoil theory. He had an excel-

lent understanding of the enormous scientific importance of his dis-

covery: later (February 1893), writing about "On the Problem of

Winged Flight", he remarks: "When I wrote this article, it was as if

no one had ever done anything along these lines before. In fact_

since I had no access to a library, I worked completely independently_

apart from my use of the most elementary scientific data. Then



Professor Zhukovskiy drew my attention to various investigations
that had led to conclusions similar to mine. "

Nevertheless, the law expressing the relation between lift
and aspect ratio was something new to science. Much later, review-
ing his ownwork in 1932, Tsiolkovskiy, writing about himself in the
third person, noted: "He was the first to establish and verify by
experiment the law of drag in relation to elongated plates. " How-
ever, Tsiolkovskiy's priority in solving this extremely important
problem in airfoil theory was undeservedly, but thoroughly forgot-
ten. It is to be hoped that the present edition of Tsiolkovskiy's
works will put an end to this injustice.

An important part of "On the Problem of WingedFlight" is de-
voted to the experimental verification of the theoretical conclusions.
Tsiolkovskiy invented a clever, but very simple device for deter-
mining the pressure on a wing (a device that was "within my means,"
as he remarks). In this device a pair of wings, mounted on a shaft,
could be rotated for a certain time by meansof a string unwinding
under the action of a weight. If this device was carried, with the
wings rotating, in a direction parallel to the shaft, the rotation
of the wings was slowed, by an amount depending on the rate of
translational motion. By observing the time taken for the string to
unwind, it was possible to determine the pressure on the wings for
different angles of attack, flow velocities, and aspect ratios.

This device greatly pleased Professor N. Ye. Zhukovskiy, who
himself demonstrated it at the mechanical exposition in Moscowin
1894. Later, the apparatus was presented by Zhukovskiy to the
Student Aeronautical Club at the MoscowHigher Technical School
and is now in the Club's museum. After reading the manuscript of
"On the Problem of WingedFlight," Professor Zhukovskiy expressed
his keen and general approval. He writes (to Professor A. G.

,! •Stoletov) : Tslolkovskiy's paper makes an agreeable impression,

since the author, with sparing use of analysis and simple apparatus,

arrives for the most part at the right results .... The author's

original method of investigation, his reasoning and ingenious ex-

perlments are not without interest and, in any event, mark him out
as a talented investigator .... The author's arguments relating to

the flight of birds and insects are valid and coincide perfectly with

modern views on the subject."

This paper was not printed in its original form. Tsiolkovskiy

himself considerably abridged it and revised it for publication. It

then appeared in 1891 in Volume IV of the Transactions of the Division

of Physical Sciences of the Society of Amateurs of Natural Science
under the title "Fluid Pressure on a Plane in Uniform Motion." An

extract from the same paper "On the Problem of Winged Flight" relating

to the flight of birds and insects was published much later (1912) in

the journal of the Seventh Aeronautical Division of the Russian Tech-
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nical Society, Tekhnika vozdukhoplananiya (Aeronautical Engineering),

No. 2, pp. 138-147, 1912, under the title "The Organization of the

Flying Apparatus of Insects and Birds and Their Modes of Flight."

As Tsiolkovskiy himself points out in a footnote to this article,
the work had not become outdated nor did it conflict with more re-

cent experiments and investigations. It was merely necessary to

supplement it somewhat. Both these papers -- '_luid Pressure on a

Plane in Uniform Motion" and "The Organization of the Flying Appa-

ratus of Insects and Birds" -- are included in the present edition,

which, moreover, is the first to include Tsiolkovskiy's note on "The

Nature of Eddy-Like Motions in Air and Water," which also formed part

of "On the Problem of Winged Flight." In this short but fundamental-

ly important note_ Tsiolkovskiy points out that the presence in a

fluid of two opposing flows (e.g., in flow around the edges of a

plate) is one of the causes of eddies. This, of course, coincides

perfectly with modern notions concerning the conditions of eddy

formation. Thus, the present edition contains all the main parts of

Tsiolkovskiy's first work on aerodynamics "On the Problem of Winged

Flight."

Tsiolkovskiy was not slow to apply the chief conclusions to

be drawn from these studies: characteristically, he always strove

to use theory as a means towards advances in technology. In this

case, the results of his aerodynamic investigations enabled him to

work out a rational scheme for a flying machine and lay the founda-

tions of sound aerodynamic design. Tsiolkovskiy's study of these

problems -- "The Airplane or Bird-Like Flying Machine" (1894) -- un-

doubtedly marks an epoch in the development of aviation engineering.

After first disproving the pessimistic theory of flight, according

to which "to keep itself in the air a goose would have to do the work

of a horse," with the aid of some simple reasoning and equally simple

experiments Tsiolkovskiy established that the weakness of the theory

lay in its underestimation of the part played by the translational

motion. When wing flapping is combined with translational motion,

the energy required to remain airborne must be considerably reduced.

The most important section of this work is Chapter II, which bears

the title "A Sketch of an Elementary Form of Flying Machine." Unlike

many foreign aircraft designers of the time, who, inspired by the

example of birds, showed a preference for apparatus with mechanically

flapping wings, Tsiolkovskiy realized that "the imitation of birds is

technically very difficult owing to the complexity of the movements

of wings and tail and the equally complex organization of these ele-

ments." "We," writes Tsiolkovskiy, "shall only partly imitate the

bird, that is to say, as far as we can." He put forward a plan for

a flying machine that in all its main features anticipated the modern

monoplane with cantilevered wings. "Our apparatus/' he writes, "has

the shape of a rigid, soaring bird, but instead of a head we envisage
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two propellers rotating in opposite senses and developing a pull in

one direction .... The place of the muscles will be taken by neutral

combustion engines. They do not require a large supply of fuel

(gasoline) nor do they need heavy boilers and large supplies of

water .... Instead of a tail there will be a dual control surface,

consisting of a vertical and a horizontal plane." "The dual control

surface, dual propellers_ and the rigidity of the wings_" he con-

tinues, "are not conditioned by any particular advantages or economy

in operation, but solely by the feasibility of the design." Tsiol-

kovskiy paid special attention to the design of the wings. He was

the first to advocate an unbraced cantilever wing of uniform strength

constructed of hollow metal tubes, and the first to envisage the

streamlined fuselage and two possible means of connecting it with

the wings: the mid-wing and gull-wing systems. Thus, Tsiolkovskiy

must be given credit for inventing and investigating the modern

cantilever-wing monoplane.

A considerable part of the work is devoted to the "derivation

of the laws of flight" -- to use Tsiolkovskiy's expression -- or, in

modern terminology_ the aerodynamic design of aircraft. Tsiolkovskiy

determined the speed required to keep a machine in the air, the en-

gine power_ and a number of other aerodynamic characteristics of air-

craft. These passages constitute the first exposition of the elements

of aerodynamic aircraft design.

Also in "The Airplane or Bird-Like Flying Machine," Tsiolkov-

skiy pursues a detailed discussion of the problems of controlling an

aircraft both in flight and during takeoff and landing. In particu-

lar, he suggests the use of a gyroscope and automatic electromagnetic

operation of the controls. Somewhat earlier (in 1893) he had pro-

posed an automatic electromagnetic control system for a dirigible.

Thus_ Tsiolkovskiy can fairly claim to have been the first to intro-

duce the idea of automatic electrical aviation equipment.

In a later evaluation of his research into the theory of the

airplane (1929)_ Tsiolkovskiy himself wrote in the preface to an

article called "The New Airplane": "My first work on the airplane

appeared in the journal Nauka i zhizn' (Science and Life) in 1895.

Up to that time no one had developed the theory of the airplane in

such detail or drawn such concrete conclusions_ which are only now

being finally vindicated."

From his work on the theory of the airplane and the dirigible

it was patently obvious to Tsiolkovskiy that the further development

of the theory was being impeded by the almost total absence of reli-

able, experimentally verified data on the resistance of the medium.
The ideas about the interaction between aircraft and medium current

at that time were largely based on speculation and of doubtful

validity. Thus_ for example_ an eminent member of the VII (Aero-

nautical) Division of the Russian Technical Society, M. M. Pomortsev,
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believed, as Tsiolkovskiy mentions, that the shape of the rear part

of a body made no contribution to the drag and, moreover, that the
air friction on the surface of a body could be neglected even in the

case of elongated bodies. Of course, these notions are completely
false. Another prominent aeronautical engineer of the day, Ye. S.

Fedorov, who carried on a polemic with Tsiolkovskiy in connection

with his paper "On the Problem of Winged Flight," claimed that the

latter was wrong in assuming a fall in pressure behind a plate moving

in a direction perpendicular to its own plane equal to the increase

in pressure in front of it. "It is usual to assumej" wrote Fedorov,

"that the pressure drop behind the plate is 0.1 of the excess pres--

sure in front of it. " However, Tsiolkovskiy's conclusions proved to
be much closer to reality than the generally accepted view.

Now Tsiolkovskiy, of course, could not refute all these
erroneous ideas about aerodynamics without appealing to experimental-

ly verified facts. His own experiments with a whirling arm, referred

to above, only enabled him to determine the air pressure on a flat

plate; the question of the effect of the tail part of a body on its

drag, the question of air friction, and many other matters remained

unresolved. Accordingly, Tsiolkovskiy was constantly seeking new
ways of solving the problems of aerodynamics by experimental means.

In 1894 he designed an apparatus for comparing the drag of any body

with that of a flat plate. This device consisted of a symmetrical

pivot anm with the test model attached to one end and a flat plate
to the other. The latter was cut away until equilibrium was just

established when the device was in motion through the air. Experi-

ments with this apparatus, the results of tests made on solids of
revolution with different degrees of elongation, and the determina-

tion of the air friction are described by Tsiolkovskiy in a paper

dating from 1896: "A 200-Man Maneuverable Iron Aerostat as Long

as a Large Steamship;" The corresponding chapter of this work:

"Experiments and Formulas Used to Calculate the Independent Speed of

My Aerostat" is reproduced in this edition. In the same work
Tsiolkovskiy also describes an apparatus for testing in a natural

wind. In this case, the test model and the plate are mounted inside

tubes which are arranged with their axes in the direction of the wind.

A photograph of this apparatus and the models for it, published for
the first time in this edition, gives a clear idea of the tremendous

variety of geometric shapes investigated by Tsiolkovskiy employing
the natural force of the wind.

By systematically investigating the resistance of the medium_

first on apparatus in which the test model had to be set in motion in
stationary air and then on apparatus utilizing the natural force of

the wind, Tsiolkovskiy arrived at the notion of the wind tunnel. Con-

cerning his invention of the wind tunnel, Tsiolkovskiy writes as

follows (article entitled '_Independent Horizontal Motion of a Maneuver-



able Aerostat" in the journal Vestnik opytnoy fiziki i elementarnoy

matematiki (Herald of Experimental Physics and Elementary Mathematics)

No. 258 and 259, Odessa, 1897: "Recently, while conducting certain

experiments, I got the idea of using a completely new method involving

an artificial wind (a vaned blower -- a kind of large winnower) (the

italics here and below are ours. - N. F.). So far I have experimented

only with a model 42 cm. long. The experiments confirmed our formulas,

and for the model in question I obtained drag coefficients that

gradually decreased with increase in the velocity of the artificial

airflow. The new method makes it possible to carry out investigations

at any time and with considerable accuracy_ it is also very convenient

for demonstration' purposes."

Apart from this first published mention of a new method of

testing models in an artificial flow of air, there exists a number of

important documents that throw light on the creation by Tsiolkovskiy

of the first wind tunnel in Russia and definitely establish his

priority in this matter. Among these documents is Tsiolkovskiy's

first description of his wind tunnel, published in this volume, which

formed part of a letter to Professor A. L. Gershun dated 12 October

1897 (discovered in 1937 by B. N. Vorob'yev). This letter, together

with drawings of the wind tunnel and wind tunnel balance and the

above-mentioned photograph of the apparatus for testing in a natural

airflow, was intended for transmittal to the Committee of the Russian

Physico-Chemical Society, which was to consider Tsiolkovskiy's

program of experiments for the study of air resistance. Among other

things, the letter contains a short_ but significant request: "Above

all, I humbly beg the esteemed members of the Committee, after having

communicated their opinion to the Society, not to divulge anything

to anyone concerning my work and plans until they have been completed

and published" (author's italics. - N. F.). Clearly, Tsiolkovskiy

was already well acquainted with the morals of capitalist society.

Annexed to the letter were the first description and drawings

of the wind tunnel_ the completely original floating-type wind

tunnel balance, the method of preparing the models, and the experi-

mental procedure. It is worth noting the high sensitivity and great

accuracy of the measuring equipment, much of which Tsiolkovskiy

built with his own hands; thus, for example, the needle of his

floating balance begins to deflect from the initial position when

the model is acted on by a force of as little as one milligram. In

spite of the low flow velocities available (in the first version the

fanwheel was rotated by hand) and the low drag of the models tested,

Tsiolkovskiy was able to make highly accurate measurements and es-

tablish some extremely important laws of drag.

The Committee of the Russian Physico-Chemical Society recog-

nized the desirability of Tsiolkovskiy's program of experiments 3 but

found the sum requested for financing the work (100-200 rubles) too
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small and on these "grounds" saw fit to turn down his request.

Tsiolkovskiy continued his work with the aid of his own meager re-

sources, which had already been eaten into by the construction of the

wind tunnel and its equipment. He published the results of his in-

vestigations in 1898 in an historic article "The Air Pressure on

Surfaces Introduced into an Artificial Airflow," which marked the be-

ginning of modern experimental aerodynamics. In this article,

Tsiolkovskiy described how, for the first time in the history of

science_ using novel apparatus and a novel technique, he had made a

systematic experimental investigation of the frontal drag and lift

forces acting on bodies of different geometric shapes, including

models of airfoils and the hulls of dirigibles. It was in connection

with this research that he first established a number of the funda-

mental laws of aerodynamics (the effect of the elongation of a solid

of revolution on the drag_ the effect of the aspect ratio of a wing

on its aerodynamic characteristics, the relation between friction,

the surface area of a body and the flow velocity, etc., etc.).

Tsiolkovskiy was the first to draw attention to the value of the wind

tunnel as a means of solving problems in aerodynamics ("this device,"

he writes, "should be an essential part of the equipment of every

university and physics laboratory"). Thus, there is every justifica-

tion for calling Tsiolkovskiy the founder of modern experimental

aerodynamics.
At the end of his article on "The Air Pressure on Surfaces

Introduced into an Artificial Airflow" Tsiolkovskiy makes a fervent

appeal for further advances in the study of the laws of aerodynamics:

"...how important," he writes, "is the correct formulation of the

laws of drag and friction! What an enormous contribution to the

theory of the aerostat and the airplane! In fact, is there any region

of science and technology in which the laws of the resistance of an

elastic medium play no part? Thus we are ardently desirous that
these laws be established and will do all we can toward carrying out

the necessary experiments."
In order to evaluate Tsiolkovskiy's personal achievement, it

is necessary to recall the great physical and mental effort required

of him. His wind tunnel ("vaned blower," as he called it) was driven

by a weight which had to be raised to the ceiling before each experi-

ment. During the short period of operation of the tunnel he had to

take the readings, and then analyze the results and plot the graphs

himself. He worked on his experiments every day for more than four

years, whenever he had time to spare from his teaching duties.
It is astonishing that in spite of the imperfections of his

wind tunnel, the low flow velocities and the sheer hard work involved

in his experiments, Tsio!kovskiy was able to determine with remarkable

accuracy such a small quantity as_ for example, the air friction on

the surface of a model and to establish the fundamental laws by which
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it is governed.

Tsiolkovskiy's exceptional experimental skill and intuition are

also evident in his treatment of his observational data. Having de-

cided that power laws governed the dependence of friction on the

flow velocity and the dimensions of the model_ Tsiolkovskiy definite-

ly established that in the expression for the coefficient of friction

the velocity and the size of the model occur with the same exponent,

as the theory of dynamic similarity requires. In this connection_ it

should be noted that the well-known English scientist Froude_ who was

able to experiment under much better conditions than Tsiolkovskiy_

arrived at conclusions relating to the friction accompanyig_ motion

through water that were in complete contradiction to the theory of

similarity.

The expenditures on building a wind tunnel and the correspond-

ing instruments and test models exhausted Tsiolkovskiy's never very

extensive funds, and in 1899 he decided to turn to the Russian

Academy of Sciences for financial aid. Tsiolkovskiy's work_ in-

cluding the results of his experiments on air resistance_ was handed

over to Academician M. A. Rykachev for review. At a meeting of the

Physico-Mathematical Division of the Academy Rykachev gave a very

favorable report on Tsiolkovskiy's experiments. In this report he

stated: "These experiments deserve the close attention of the

Academy, for the sake of both the idea behind them and their variety•

In spite of the author's primitive home-made apparatus, he has been

able to determine the velocity when the air blower is driven by

different loads: ... the author has determined the relation between

the drag and the flow velocity and the geometry of the shape• Some

very interesting experiments relate to the effect of the tail section;
.. the extent to which the author has been able to obtain reliable

results is indicated by the agreement with the data provided by tests

of the pressure on a flat plate; ... the changes are almost exactly

what the theory would lead one to expect .... For all these reasons

it would be extremely desirable to repeat the experiments on a

larger scale and with more accurate instruments_ and I respectfully

suggest that this Division grant the author's request and extend to

him material support from the fund intended for the promotion of

science." On the basis of Rykachev's report, the Academy of Sciences

decided to assist Tsiolkovskiy and granted him 470 rubles to continue

his experiments. Tsiolkovskiy proceeded to build a new wind tunnel_

considerably larger than the first. In building and adjusting this

tunnel he gave careful attention to the flow created by the fan. In

order to make sure that the flow was always uniform and in the same

direction, Tsiolkovskiy employed_ for the first time_ a screen con-

sisting of oriented baffle plates. Almost throughout the year 1900

Tsiolkovskiy was occupied in building his new wind tunnel and the

auxiliary equipment for it. In his article "Air Resistance and Aero-
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nautics" (1902) he describes it as follows: "The Academyentrusted
Academician M. A. Rykachevwith the task of reviewing my work." As a
result of his favorable report and intercession with the Academy, the
latter decided to give me a grant (470 rubles) for carrying out
further experiments, in accordance with a program which I also put
before the members. This was in May 1900. I then set about building
a large wind machine ... to give a flow an arshine (71.12 cm) high
and wide. The measuring instruments were also made-- and all this
was redone and readjusted as manyas six times before a really satis-
factory flow of air was achieved.

"Toward the end of 1900 1 was able to start assembling the
models and performing experiments. Toward the end of the following
year (16 December1901) I had already completed part of the proposed
program and submitted a report to the Academyon the progress I had
made. This report was simply a summaryof my notes and consisted of
80 written pages of text and 58 tables and drawings. "

In spite of the fact that the report was very bulky and con-
tained an enormousamount of experimental material and corresponding
generalizations, the program originally proposed by Tsiolkovskiy was
far from completion. "There is a still a great deal to be done/'
he writes in the samearticle "Air Resistance and Aeronautics," "and
Godknowswhen I shall finish it and solve the problems that preoccupy
me. In all probability it will be necessary to undertake new ex-
periments with better instruments in order to get more accurate re-
sults in certain instances." The problems posed by Tsiolkovskiy were
so broad and varied that it becamenecessary to set up a special
aerodynamics institute to solve them, a suggestion which he actually
madein one of his letters to the Presidium of the Academyof Sciences,
a letter that remained unanswered.

Tsiolkovskiy's report to the Russian Academyof Sciences_ which
he had intended for inclusion in the Transactions of the Academy,was
never published during the pre-Revolutionary period; it appears for
the first time in this edition of Tsiolkovskiy's collected works.
Apparently_ the reason for the non-publication of the report was the
petty fault-finding attitude of Academician Rykachev, to whomthe
report was assigned for review. While acknowledging that the experi-
ments were "numerous_diversified, and interesting and deserve atten-
tion," Rykachevmadewhat, in our opinion, were excessive demandson
the author of the report, expressive of his distrust. Hewrites:
"In connection with the publication of Mr. Tsiolkovskiy's work in
the transactions of the Academy, it will first be necessary for the
author to present his experimental material in more orderly form_
grouped so that each conclusion given in the text is accompaniedby
all the observations from which this conclusion is drawn, with an
indication, at least, of the day on which these observations were
made ..._ moreover, observations that have been disregarded should

I
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also be included and the reasons for disregarding them explained.

The numbers under which each experiment is entered in the table should

be noted in the raw material of the report." For the sake of these

missing numbers Academician Rykachev overlooked the main contents

and conclusions of Tsiolkovskiy's work_ which included the following

important findings: experimentally established relations between

the pressure on a plate and its aspect ratio, between the pressure

on a plate and the angle of attack (over the range from 0 to 90°)_

between the drag of a cylinder and its proportions, angle of in-

clination to the flow, and the flow velocity, between the lift and

frontal drag on airfoils and their concavity, and many others. In

the same report, laying the foundations of the aerodynamic design of

aircraft, Tsiolkovskiy established that the engine power required is

proportional to the frontal drag coefficient and inversely propor-

tional to the lift coefficient to the power 3/2; the corresponding

formula is now a feature of all textbooks on aerodynamics. On the

basis of his experiments on surfaces elongated in the direction of

flow, Tsiolkovskiy was also able to give the principal equations of

turbulent friction. In this report and the later "Air Resistance

and Aeronautics," which included its more important conclusions,

Tsiolkovskiy showed that the drag coefficient of all bodies depends

not only on their shape but also on the size of the body and the

velocity of the flow. In the article 'fAir Resistance and Aeronautics"

he writes: "Up to now ... it has always appeared that the drag co-

efficient depends only on the shape of the body and not on its size

or the flow velocity; in other words, that the drag of similarly

varying bodies is proportional to the square of the flow velocity

and the area of the body projected on a plane perpendicular to the

flow. Now we can see just how ill-founded these conclusions of the
I,

generally accepted theory are.
In this same article "Air Resistance and Aeronautics," and in

his report to the Academy of Sciences, Tsiolkovskiy arrives at an

important conclusion concerning the incorrectness of the prevailing

views on the nature of the resistance exerted by a medium and theo-

retical methods of determining the drag. He formulates this conclu-

sion as follows: "The basis for determining the drag of any shape

was assumed to be the pressure on an inclined plane. The surface of

anybody can be visualized as consisting of a multiplicity of plane

faces. By double integration we obtain the total pressure on the

body. The first mistake lay in neglecting friction, since it always

appeared that with the elongation of the body the drag diminished ad

infinitum, though this has never been verified experimentally ....

Moreover_ there are many formulas for the pressure on an inclined

elementary surface .... From the consequences of applying these and

other formulas it is clear that the accepted method is, in general,

never applicable and this constitutes the second error: new ideas
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about the phenomenonof drag are needed together with experiments,
which are the only meansof verifying them." These fundamental results
obtained by Tsiolkovskiy worki_ under the auspices of the Academyof
Sciences remained unacknowledgedby the official scientific circles
of the pre-Revolutionary period.

Tsiolkovskiy's subsequent works on aerodynamics belong to the
Soviet period of his life. He deals with a number of aerodynamic
questions in "The NewAirplane," a work dating from 1929. Here he de-
veloped the idea of an aircraft without a fuselage, the stability of
which was to be created by an internal overpressure. In view of the
absence of a body, struts, wheels_ pontoons, and braces, the drag
would be much reduced.

Another work by Tsiolkovskiy belonging to this period is en-
titled "Pressure on a Plane in a Normal Airflow" (1930). This is de-
voted to the question of the pressure and temperature of air at high
speeds. It remained unfinished_ like a number of other incomplete
fragments of a larger work that Tsiolkovskiy was planning: "Funda-
mentals of the Construction of Gas Engines, Motors, and Flying De-
vices. "

As we have seen, Tsiolkovskiy's legacy in the field of aero-
dynamics is both varied and extensive. His work embracesa wide
circle of problems_ manyof which he was the first to pose and solve.
Hewas a genuine pioneer in aerodynamics, to which he brought new
and original methods of investigation. However, in autocratic Tsarist
Russia the ruling classes scudthe representatives of aeronautical en-
gineering of the 7thDivision of the Imperial Russian Technical
Society_ who were closely linked with them_ despised and ridiculed_
brushed aside and suppressed the work of the remarkable Russian
scientist. The slavish predilection for all things foreign was so
ingrained in these people, they were so cut off from the national
Russian soil_ that they had little faith in the prophetic words of
the genius Lomonosov: "The Russian land can give birth to its own
Platos and brilliant Newtons." In official circles the attitude to
this self-taught teacher_ working in a remote spot in the provinces
on the problems of aviation and aeronautics, was one of haughty
arrogance; at best, he was looked upon as an inventor with fantastic
ideas.

0nlywith the advent of Soviet rule, from the very first
months_ did the official attitude to the great scientist radically
change. The state institutions connected with civil and military
aviation invited him to participate in their work; his scientific
findings were systematically published and becamewidely known. The

i

i
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creative force of Soviet patriotism gave Tsiolkovskiy a new lease on

life_ which enabled him to overcome the obstacles of age and poor

health and labor fruitfully for his native country. The following

lines from an article "The Future of Flight" printed just before his

death in the Kaluga newspaper "Kommuna" are permeated with Tsiolkov-

skiy's highly patriotic spirit: "All this is but a feeble attempt

to predict the future of aviation_ aeronautics_ and rocket flight.

Of one thing I am firmly convinced -- the Soviet Union will lead the

world. The capitalists are also working on these problems_ but the

capitalist system is inimical to everything new. Only in the Soviet

Union is there a powerful aviation industry_ a wealth of scientific

institutions_ public interest in the problems of aeronautics_ and

workers endowed with a love of their country so extraordinary that

it can not fail to ensure the success of our undertakings."

Tsiolkovskiy's high sense of patriotism also dictated the

appeal he addressed shortly before his death to the great leader of

the nation Comrade Stalin: "All my work on aviation_ rocketry and

interplanetary flight_" he wrote_ "I bequeath to the Bolshevik party

and the Soviet Government -- the genuine leaders of the progress of

human culture. I am convinced that they will successfully complete
it."

The development of aviation science in the Soviet Union and

the broad popularization of Tsiolkovskiy's ideas constitute the ful-

fillment of the testament of the great Russian scientist.

I would like to take this opportunity of thanking the secretary

of the Commission for the Publication of the Works of Tsiolkovskiy_

B. N. Vorob'yev_ for his invaluable assistance in sifting through

the extensive archive material containing Tsiolkovskiy's writings on

aerodynamics; in editing the text_ and in compiling the notes. I am

also greatly indebted to B. N. Vorob'yev for his detailed biblio-

graphic survey that enabled me to find my way among the profusion of

scientific documents that Tsiolkovskiy left behind.

N. Ya. Fabrikant
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AERODYNAMICS

FLUID PRESSURE ON A PLANE SURFACE IN UNIFORM MOTION*

I wish to express my warm thanks to A. G.

Stoletov and N. Ye. Zhukovskiy for pointing out

to me the significance of my own work in relation

to other work of thesame kind I_.

K. Tsiolkovskiy

Let us resolve the uniform and rectilinear motion of a flat

plate into two components, one parallel to the plate itself, which,

for the sake of brevity, we shall call the parallel component, and

one perpendicular to the plate, the normal component•

In the presence of steady normal motion the force exerted by

fluid pressure on a flat plate may be expressed by the equation:

F : mS.d V2 (I)
g n

where F denotes the force, K is a correction factor, less than unity,

S the area of the plate, d the volumetric weight of the fluid, g the

acceleration due to gravity, and Vn the normal velocity of the plate.

The determination of F from this formula gives values very close to

those obtained by means of experiments (the error is not greater than

1/lO) employing rotary apparatus•

*This article was first published in Volume IV of the Transactions

of the Division of Physical Sciences of the Society of Amateurs of

Natural Science, 1891.

¢_he numerals refer to the correspondingly numbered notes grouped at

the end of the book (pages /265-268). (Ed.)

I
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However, equation (i) cannot be used to determine F_ unless

the motion of the plate and the surrounding medium is steady.

Let us first determine the work that the plate must do to

impart steady motion to the medium. We shall have to adopt some

hypothesis regarding the nature of the fluid motion, which, of course,

will appear the more likely the more closely the conclusions that

follow from it are confirmed by experiment.

Here is one such hypothesis concerning the motion of an in-

compressible medium when the plate in question is circular in shape
(Fig. 1).

The greatest velocity is acquired by the particles lying close

to the moving plate, the direction of motion of the particles in

front of and behind the plate being the same:

the particles in front are driven ahead_

those behind are dragged along in the same

_ _ direction owing to the rarefaction of the

k \'_J / air. We shall assume that a sphere of fluid

_..]_.../ surrounding the plate, like a great circlej
has a uniform velocity equal to the velocity

of the plate; the particles of this sphere

Fig• 1 push against and entrain other more remote

parts of the fluid; but since the space or,

as it were, the channel gradually expands,

the velocity of the particles decreases the further they are from the
moving plate•

Thus, denoting (Fig. l) the radius of the plate by r, the radius

of a certain spherical layer of fluid by H, its velocity by V, and the

velocity of the plate by Vn, we find:

V -w. r2
V = n

_. _ - Vn 2H2_ (2)

for clearly the velocity of the layer H is as many times less than the

velocity of the plate as the surface of the layer is greater than the

surface of the plate.

As for the entrainment of the parts of the fluid lying behind

the plate in a manner analogous to the motion of the particles driven

in front of the plate, the notion is one that is easy to verify both

experimentally and theoretically. Suppose the plate undergoes a

certain forward displacement; then, if the fluid had no elasticity

and lay in a gravitationless medium -- if a void were left behind the

plate corresponding to its displacement -- there would be no suction

or entrainment of fluid; but since, in ordinary circumstances, the
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fluid has weight, not to mention elasticity, it will immediately

occupy the vacuum left behind the plate. A second layer is then en-

trained behind the first and so on, just as the layers of fluid in

front of the plate push against each other.

The differential of the work T done in moving the fluid

2

v (3)dT = dm" --
2g'

where dm is the mass of a spherical layer of thickness dH; however,

and since

dm = 4w- H2. dH'd

2
r

V=V "--_
n 2_

w.d V2 r4dT .....
2g n

• dH. (4)

Integrating this equation, we find

- w.d.V 2 4
n r

T = -- + C_
2g H

(5)

where C is the constant of integration.

If H = r, the work T is equal to that necessary to impart a

constant velocity V to the sphere A (Fig. i); then
n

_ w.d.V 2

3_ _.P.d. _n = _ n. _3 + c;
4 2g 2g

(6)

from the last two equations we get

I ii
i
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m ( _) 2w'd r3V2T : w.d rS.V 2 1 - + --" " • (7)
2g n 3g n

In order to determine the work corresponding to the whole of

the infinite fluid surrounding the plate, we must put H = _; we then

find

T = -7- •w'.___d.r3 . V2. (8)
6 g n

Knowing the work T and the displacement of the plate, it is

possible to find the average pressure on it.

However, before the latter equation can be used to determine

the pressure on a flat plate in complex motion (i.e., parallel and

normal motion), it is necessary to establish the following proposi-

tions:

a) Both theory and experiment show that in the presence

of normal motion the pressure on a plate is almost strictly propor-

tional to its area, irrespective of its shape.

b) In exactly the same way, both theory and experiment

show that at the initial moment of normal motion of a plate the work

T is expressed by equation (8) irrespective of the shape of the

plate, provided that it is not very elongated; given these two pro-

positions_ the theory of whfch I must omit for lack of space, equation

(8) can also be applied to a rectangle with sides a and b, provided

it is not too elongated;

Accordingly, let us substitute for u- r2 and r in (8) as follows:

w.r 2 = S and, since w.r 2 = a.b, r = _;

whence

2? i. s •vn. (9)
T= _" g
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Weshall now determine the pressure of the air or any fluid on a rec-
tangular plate, one side a of which is perpendicular and the other b
parallel to its direction of parallel motion.

If the plate had only the normal velocity Vn, the work done in

acquiring this velocity (in a small interval of time) would be ex-
pressed by equation (9). However_a plate that also had a parallel
velocity V would in unit time pass through the space V in a direc-

P n
tion perpendicular to the former, and therefore its work per second
would be as many times greater than the work given by equation (9) as
the parallel velocity V is greater than the width b of the rectangle_P

in the direction of which this movementis executed. Actually, in
the presence of a normal velocity alone, a rectangle imparts a known
motion to the air close to the area a. b; in the presence of trans-
lational motion the samerectangle imparts to the air in one second
a motion close to a surface of length V and width a, i.e._ an area
Vp" a,

Vp.____a V
= -2 (lO)

a.b b

times greater than the previous one. To each part of this strip of

air the rectangle imparts a certain motion.

Thus, denoting the force exerted by the normal pressure on a

flat plate due to this cause by F, we find that on the basis of equa-

tions (9) and (lO) the work done per second

whence

7.d.s. V2n " ; (ii)
F'Vn = 6-g

7-d.SF = .V .V . (i2)
6_wg n p

Introducing the correction factor K into the right-hand side

of this equation, in view of the fact that (lO) is not rigorously de-

rived and proposition (lO) is limited, and adding to the pressure of
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(12) the pressure of (I) due solely to the normal steady motion, we
get

S.d V2 <F=K.--- I+
g n

Vp-- J7 (v)}

Before proceeding to point out the scientific value of this

equation, I consider it necessary to verify it by experiment.

The apparatus designed to verify the theory consists of a

small stand with a horizontal shaft revolving in it. Two thin wires

are attached to the shaft at right angles. At the ends of these

wires it is possible to mount various thick paper rectangles of dif-

ferent sizes and proportions, so that the shaft supports two rec-

tangular, symmetrically mounted wings (Fig. 2) lying in the same

plane. The shaft and the wings can be made to revolve for a certain

length of time by means of a string which is unwound from the shaft

under the action of a weight.

With this apparatus it is easy to see how the air resistance

increases with increase in the parallel velocity of the wings, which,

apparently_ acting on the thin edge of the wings, ought not to have

any effect on the rate of rotation of the device.

To demonstrate this, I take the apparatus in my hands and allow

the weight to fall_ so that the wings revolve at a known speed; if

now, during their rotation_ I begin to walk_

still holding the apparatus, in a direction

parallel to the shaft, the rotation clearly

__ becomes slower and may even almost stop_ if

the rate of translational motion is increased

(the weight was 2 grams_ the width of the

wings about 4 cm._ the length about 5 cm.,

the same as the shortest distance from the wings

to the shaft).

Fig. 2 However, in order to obtain accurate re-

sults_ it is necessary to formulate a few

auxiliary equations applicable to our apparatus (Fig. 2).

Denoting the air pressure on one wing by F_ the distance be-

tween the center of pressure and the shaft by R_ the radius of the

shaft by r_ and the load by P, we find the condition of uniform motion

of the wings

2" F. R = rP. (14)
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If in the course of time t the wings make n complete revolu-

tions, while the string unwinds through the length L, then

and

• • •t (15)2_ R n = V n

2w .r- n = L. (16)

Using these equations to eliminate R and r from (14), and

equation (13) to eliminate F, we get

/----

4S.w.d R2 _2w.R.n 7"K A/ a_ _ P.L

g. t " . n __ + 6 _w b _"Vp = 2w.n

(17)

Knowing that S = ab and solving this equation for t, we find

the time for a string of length L to unwind under the action of dif-
ferent loads:

+

t 14"dn2"R2 • JTT 3.a3.b-V .K +
3"P'L'g P

J .a3.b. +
4 9.p2.s2.g2 p 2

P.L.g.a

(]_8)

We shall use this formula for surfaces that are not too elonga-

ted_ when the factor K may be assumed equal to unity; for example, let

us put:

a = 5 cm, b = 5 cm, d = 0.0013, n = I0, R = i0 cm,
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Vp = I00 sec'CmL = 21 cm, g = 980 c_sec 2 (19)

and compute a series of times corresponding to a series of assumed
loads P.

Then, rotating the wings of an apparatus (Fig. 2)_ satisfying

conditions (19), by means of a series of weights, while at the same
time giving the apparatus a translational velocity of I00 c_sec in

the direction of the axis of rotation of the wings_ and noting the

time for the string to unwind_ we get another series of times_ in

this case determined experimentally. The computed and the experi-

mentally determined times are compared in the following table (20):

P t t
comp. exp.

1

2

3

4

5

6

7

8

9

lO

2O

90.6

47.2

34.8

27.6

23.0

20.1

18.0

16.3

15.o

13.9

8.6

91

47

35

28

23

2O

18

16

15

14

9

(20)

The first column gives the load in grams, the second the com-

puted time, the third the time found experimentally. It is clear
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that part of our theory at least is well-founded.

It remains to verify the influence of the aspect ratio of the
wings a/b on the force F, as expressed by equation (13).

From equation (18), representing the consequences of this law,
it is clear that for a constant load P and a surface that is not too

elongated, when K = l, the time taken by the string to unwind is pro-

portional to the square root of the width of the wings b, or, if the

length a is constant, inversely proportional to the aspect ratio a/b
of the wings. We shall use this deduction from equation (18) to

check equation (13) with respect to the aspect ratio of the plate.

To this end, I cut out plates with different aspect ratios and

mounted them successively on the spokes of the apparatus. Out of

numerous experiments I present a single table (21)°

b ii/4 21/s

a

b 4 2

texp. 13 24

25t
comp.

5

1

35

l0

i/2

53

5O

15

i/3

67

60

L

2O

I/4

8O

7O

(21)

The first row gives the width of the plate b (or the length in
the direction of the shaft) in centimeters, the dimension in the per-

pendicular direction being fixed (5 cm.); the second gives the as-
pect ratio a/b of the rotating rectangles: the third the time t in

seconds determined experimentally for a constant load P of 3 grams

and, in all other respects, in accordance with conditions (19);
finally, the fourth row gives the time taken for the string to un-

wind as computed from equation (18) assuming that K = 1. As the table

shows, the agreement between the experimental and the computed re-

sults is the greater the less the elongation of_the plate or, more
correctly_ the more the shape of the plate approaches a square.

By substituting successively in equation (17) the dimensions

of the plate and the corresponding experimental times from table (21)

and assuming that P = const. = 3 grams and_ in all other respects,
conditions (19), we obtain from (17) a series of values of the factor

K_ which it is then easy to express by means of an empirical formula.
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This formula is very simple_ namely:

K = 9 (22)

Computing the times from equation (18) and taking K from (22),

we obtain a series of values: 13, 23, 35, 53, 68, 79 very close to

2
those obtained by experiment .

I must mention one of my experiments that very clearly indi-

cates the enormous influence of the aspect ratio on the air pressure_

or on the time the string takes to unwind. The basis for this ex-

periment is equation (18) or equation (13), which may be simplified

when the load P is small or when the rotational velocity V is small
n

compared with the translational velocity Vp; then_ instead of equa-
tion (18), we get:

28. d. n2. R2 f
t = • a. _3-(a-b) • V .K. (23)

3"P'L-g P

From the latter equation it is clear that, when the area a-b

of the rectangle is constant and the other conditions are the same_

the time the string takes to unwind is proportional to a, i.e., to

the length in a direction perpendicular to the shaft. Accordingly_

if, for example_ we have a rectangle one side of which is twice as

long as the other, and if in two successive experiments this rectangle

is arranged in two ways -- once with the long side at right angles

to the shaft and once with the long side parallel to the shaft, then

in the first case the unwinding time will be twice what it is in the

second, even though the center of pressure is in both instances the

same distance R from the shaft.

Amd_ in fact, this theoretical conclusion is completely borne

out by experiment.

Thus, a single rectangle of area a.b_ acted on by the same

load_ will rotate at different speeds depending on its orientation.

From equation (12) it is also clear that in these two cases

the pressure will differ by a factor of two. In fact_ in the first
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a a Icase -- = 2, in the second -- = -- the ratio is equal to 4, the square
b b 2

root of which is 2. Consequently, F changes by a factor of two.

Considering equation (13) and using the empirical expression

(22) for K to solve the problem of the maximum of the pressure F, we

find that, if the area a.b is constant and other things are equal,

the pressure will be greatest when the aspect ratio of the rectangle

I
is equal to 3_--.

Equation (13) may be written in another form:

F = K d__.S.V2.sin2 i _i + 7"K _ctg i),

g
(24)

and it will then express either the wind pressure on a stationary

rectangle or the pressure of a fluid on a rectangle moving in it. In

this equation V denotes the velocity of the wind or of a plate, one

side a of which is perpendicular to the velocity V_ and i is the

angle between the velocity vector and the plane of the plate.

If the angle i is small, equation (24) becomes:

F K d S V2-sin i (67K _
(25)

from this formula it is clear that if the angle i is small, the pres-

sure is proportional to sin i, as is now assumed by all authors con-

cerned with drag.
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THE NATURE OF EDDY-LIKE MOTIONS IN AIR AND WATER 3.

My hypothesis concerning the motion of a fluid under the in-
fluence of the normal motion of a flat plate makes it easy to under-

stand the reason for the formation of eddies.

In accordance with this hypothesis,
the motion of air under the influence of the

first impact may be represented by the

_ _ _L sketch in Fig. i**.
At the edges of the plate AB two op-

_4__" i _" posing flows meet and create a circular too-
/ _ tion. It is only necessary to pull an oar

|
through still waterj as in rowing, to con-
vince oneself of the truth of this theoretical

Fig. 1 conclusion.

Conversely, whenever flowing water

encounters an obstacle, a bridge, rapids,

and so on, the funnel-like depressions characteristic of eddies are
inevitably formed.

Similarly, air, when it strikes a buildingj mountain, or large

obstacle, must form eddies, and indeed it is in these circumstances

that eddies are mainly observed. Powerful cyclones and tornadoes
are born in the mountains and carried for extremely long distances

by the general flow before they die out. Of course, there may be

other possible causes of eddy formation.
From these arguments you may judge for yourselves whether my

hypothesis is a likely one.

*Taken from a manuscript dated by the Author 19 January 1892.

**For the most part, the sketches reproduced in this edition are

Tsiolkovskiy's own. (Editor)
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THE ORGANIZATION OF THE FLYING APPARATUS OF INSECTS AND

BIRDS AND THEIR MODES OF FLIGHT*

Stationary atmosphere

Insects equipped with a single pair of wings offer an example

of an elementary form of flying ms.chlne.

Each wing is a more or less elongated ellipsoidal plate.

How is this simple apparatus used to achieve flight? How does

an insect stay in the alr, move, turn, rise and fall?

Let us consider the moment when the wings descend. At this

point, of course, the air exerts a pressure on their underside, the

intensity of which depends on their rate of motion, i.e., may be

*This article is actually an extract from mymanuscript "On the Problem

of Winged Flight." This was transmitted to Professor Zhukovskiy by

Professor Stoletov. The former, having reviewed it favorably,

suggested that I pick out what was, In my opinion, the most important

part for publication in the Transactions of the Society of Amateurs
of Natural Science.

At that time I chose the computations and experiments on the re-

sistance of plates.

Although the manuscript w_s written not later than 1890, i.e., 22

years ago, on re-reading it I did not find it outdated, nor have

the findings been contradicted by subsequent research along the same
lines.

* First published in the journal Tekhnika vozdukhoplavaniya (Aeronauti-

cal Engineering), No. 3, 1912. The article is reproduced here with

additions by the author which, for technical reasons, were omitted

from the version published in the above-mentioned journal. (Editor)
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equal to the weight of the insect or greater or less. In the first

case there is no change in the vertical position of the insect; in the

second it rises; and in the third it falls.

I am assuming that the surfaces of the wings are parallel to

their horizontal axis of rotation, and at the same time parallel to

the longitudinal axis of the insect (Fig. i).

Fig. i.

When the wings are raised they should assume a vertical position,

so that the air offers no resistance and no downward-directed pressure

is exerted.

Thus, with the beating of the wings, the body of the insect will

now rise, now fall. If the amount by which the body rises is equal to

the subsequent fall, the average level of flight will remain the same.

In view of the extremely high rate at which the wings beat, the oscil-

lating motion of the insect's body is scarcely discernible. This form

of flight is comparatively rare, since the atmosphere is hardly ever

completely still. However, the body of the insect may rise even if

the wings are inclined to the vertical during the upward beat, since

the upward pressure may still be much greater than that in the opposite

direction.

However, in this case the insect will not have any horizontal

motion, and the work it does in maintaining itself in the air or

hovering without support will be much greater than in rapid transla-

tional flight.

In order for there to be such motion, it is necessary for the

surfaces of the wings to be inclined to their horizontal axis of
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rotation. Then the normal air pressure on the wings can be resolved

into two parts (Fig. 2): one -- almost vertical -- will counteract

the weight of the creature, the other -- horizontal -- will thrust

it forward in the horizontal direction; this force will balance the

air pressure on the body and wings of the insect.

Fig. 2.

For the sake of brevity, I shall describe as positive any

inclination that produces a force acting on the wings to thrust

the insect forward.

In the absence of translational motion, any, even the slightest

inclination of the forward part of the wings may be called positive.

But in the presence of translational motion this is not so (Fig. 3).

Fig. 3 shows the two components of the relative velocity of the air_
due to the translational motion of the insect and the descent of the

wings. Being parallel to the resultant of the velocity, the surface

of the wings does not develop either a forward or a backward force,

and hence does not give a positive inclination, though the actual

inclination may be very great, 30° , for example.

The inclination shown in the figure may be described as the

zero inclination*. Any, even the slightest reduction in this in-

clination will make it positive, because the relative flow will then

*Because it neither supports the weight of the body nor imparts
translational motion.
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be directed against the underside of the wings.

Fig. 3.

The horizontal position is another limiting position of the
wing, in which the forward thrust is a minimum.

In view of the fact that the rear part of the wings of fly-
ing creatures is thinner and more flexible, it is deflected up-
wards by the air pressure on the downbeat, thus independently ac-
quiring a positive inclination.

A positive inclination not only thrusts the insect forward, but
also prevents it from falling (Fig. 3).

If the deviation from zero inclination (Fig. 3) is reversed,
i.e., if the angle of inclination increases, the relative flow will
be directed at the upper surface of the wing, producing a downward
pressure that will brake the translational motion and deprive the
insect of its sustaining vertical force, i.e., will cause it to
I_II.

Nowlet us consider what happens whenthe wings move in the
other direction, i.e., on the up beat. Here again there are three
important possibilities (Fig. 4). If the relative counterflow, com-
poses of the translational motion of the body and the beat of the
wings, coincides with the changed inclination of the plane of the



31

wings, then the counterflow* will slide along the wings without ex-
erting pressure on them. This inclination is the reverse of the
previous one, i.e., in other words, tae leading edge of the wing is
higher than the trailing edge. In spite of this, the inclination can
also be described as zero in relation to the propulsive force. The
second case is obtained whenevertais zero inclination increases
(Fig. 4). The,, _ne i'low is alrecte_ against the underside of the
wing and not only maintains the insect in the air but retards its
flight, since the horizontal componentis opposedto the direction
of motion of the insect's body. Weshall call this kind of inclina-
tion negative. Thus, even whenthe wings are raised, they can be
given an inclination that causes a lift force to act on the insect.

Naturally, this lift force depends on the amount by which
the inclination increases and on the translational velocity of the
insect. It maybe smaller than, greater than or equal to the weight
of the insect, so that the insect mayeither fall, rise or remain
at the samelevel.

The sameholds true for the downbeat, i.e , for a positive
inclination (Fig. 3).

In the case of a positive inclination (Fig. 3), the transla-
tional velocity of the insect increases, decreases or remains un-
changed, depending on whether the resistance of the air is less
than, greater than or equal to the horizontal componentof the
pressure on the wings.

In the case of a negative inclination (Fig. 4), the horizontal
componentcounteracts the horizontal flight of the insect, so that
the translational motion is always retarded. The body of the insect
is maintained in the air, during the brief momenttaken to raise the
wings, by the previously accumulated vital force contained in the
body of the rapidly moving creature; but the retardation is fairly
slight in view of the high translational velocity and the rapidity
with which the wings are raised.

In general, then, the flight of an insect is now faster -- on
the downbeat -- now slower -- on the up beat.

The kind of flight described is the most favorable kind for an

*These arguments concerning the pressure of the counterflow relate
to the intersection of the wing by a plane normal to the longitudinal
axis of the wing and parallel to the long axis of the insect's body
(see figures ).
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insect, since the wings will support the body not only on the down
beat but also on the up beat, which reduces the de_nds on the insect's
strength. But even in this case the wing mechanismmaybe fairly
simple: suppose that, before they start to beat, the wings have a
negative inclination (Fig. 4); whenthey are raised theywill balsnce
the rapidly moving body; but, by virtue of their flexibility, during
the rapid downbeat their negative inclination becomespositive, and,
thanks to the positive component, the flight of the insect will be
accelerated.

Fig. 4.

In view of their primitiveness and the rapid beating of their

wings, insects can and probably do manage without a negative inclina-

tion: the flexibility of the wings alone is sufficient for sustained

flight.

The velocity of the different parts of the beating wing is not

the same. This means that the shape of the wing m_y not be perfectly

plane nor may all the parts of the wing h_ve the same flexibility.

Even if the wings of a flying insect are motionless relative

to its body, there msy still be pressure on them, and this pressure

may be greater than, less than or equal to the weight of the creature_

depending on the r_gnitude of the negative inclination. And there-

fore, in general, whatever the state of the wings -- whether they

beat or not -- by maintaining a known inclination the insect can re-

main at the same height, rise or fall at will, if only it can preserve

a sufficient horizontal velocity. If not, it can re-acquire such a

velocity either by powerfully beating its wings at a positive in-

clination or by allowing itself to fall, i.e._ in inclined flight

L]
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with the wings in motion or relatively motionless.

Conversely, when it is necessary to slow down or lose horizon-

tal velocity, the insect, desiring to settle on the ground or the

branch of a tree, without beating its wings, gradually increases their

negative inclination, until it loses almost all its translstional

velocity and can cling to some perch; the increase in the negative in-

clination of the wings must completely balance the force supporting

the weight of the insect's body, which decreases owing to the fall

in horizontal velocity. Of course, there is a limit to this fall

in velocity, beyond which no inclination is of any avail; this is

why landing is impossible without a slight jolt.

The above, however, is more applicable to birds, which have

a more complex flying apparatus. An insect can scarcely change the

inclination of its wings in relation to its body freely as desired.

Nevertheless, thanks to the flexibility of its elongated body it can

change their inclination in relation to the horizon. The body acts

like two control surfaces -- a horizontal and a vertical.

The deflection of the body changes the inclination of the

wings with respect to the horizon, turning the insect to right or

left.

The elongation of the wings, noticeable in all creatures

that fly, increases the vertical sustaining force, for the same

wing area.

The organization of the wings of birds and their mechanism of

flight can be identified with the mechanism employed by insects if

the bird is in rapid flight and its feathers are all interlocked to

form a single whole as a result of the air pressure against the under-

side of the wing, which in this case is equivalent to a single ele-

mentary plate. The only difference is that the wings of a bird,

driven by the muscles of the relatively solid leading edge, can be

made to assume the necessary inclination at will and, in general, by

means more complicated than those available to the insect.

But the situation is different at the beginning of a bird's

flight or when, in a still atmosphere, it desires to hover motion-

lessly in the air, a feat that requires intense effort and is

therefore more often reserved for windy days. Then every element of

the wing, every feather performs its function independently, exactly

like the wing of an insect; the bird becomes a multiwinged creature,

the number of wings depending on the number of feathers.

When the wing is raised, if the bird itself is not moving and

there is no wind, the air presses against the upper surface of the

wing. To prevent the air pressure from forcing the bird down, each

feather of the wing is capable, under the influence of this pressure,

of orientating itself almost vertically. On the down beat the

feathers are quickly rotated by the reversal of the pressure and

align themselves horizontally with the edges overlapping to form
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a single whole -- a continuous plate.

Anyone who has observed a bird hovering above its nest on a

still day will have noticed how it is possible to see through the

wings, which open to let through light and air as they are raised.
The curvature of the lower surface of the wings does very

little to intensify the pressure on the wings in the form of flight

just described and hence only slightly reduces the rate of beating

and the work done in rising into the air. More important is the

fact that the complexity of the wings and their convexity enable the

bird to fold them neatly and snugly against its body. In fact, the

bird uses its wings as a top coat to keep it warm when the fire that

gives it the energy to fly is banked. But there is another, more

deep-seated reason for the curvature of the wings.

In rapid horizontal flight the band of air below and above the
wings acquires a known velocity as a result of their pressure. In

order for this process to develop uniformly and smoothly, during the

short time the air takes to pass beneath the wing, and in order for

the alr pressure on the wing to be uniformly distributed, the wing is
curved. Without this curvature the air would not be given a smooth,

uniform acceleration and would not exert the maximum * pressure on

the wing. The curvature is similar to that of the blades of a
turbine wheel that utilizes the force of moving water. The wings of

creatures that fly rapidly are less convex than those of creatures

that fly more slowly. But the more rapid the flight the sharper the

body should be and the less its lateral curvature; thus, in rapidly

flying creatures the low degree of curvature of the wings corresponds

to a low degree of lateral curvature of the body, which may perhaps
help the wings to fit more snugly to the flanks of the bird and keep

it warm.

The independent action of each wing, i.e., the independent

control of its inclination, and the rapidity with which the wings

beat make lateral stabilization easy. Longitudinal stabilization, of

course, is controlled by the tail.

If airplanes are ever replaced by ornlthopters, in order to
design the latter rationally it will be necessary to make a closer

study of the flight of birds and insects.

*Much later this was repeatedly confirmed by myself and others.
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II

Uniform horizontal motion of the medium

So far we have considered only flight in a stationary atmo-

sphere.

A uniform flow of air, which is at all points in uniform

rectilinear motion in a single horizontal direction, can not, how-

ever much ingenuity is employed, have any effect on the motion of wings

or the other organs necessary for flight. Everything will be ex-

actly the same as if the air were absolutely still. The energy need-

ed to fly will be the same, and the translational velocity will be

the same, if it is referred to the air and not to the ground. Other-

wise the velocity will change in magnitude and direction. This

change in the velocity and direction of the flow is well known and

we shall not dwell on it here.

Having derived the formulas for the motion of birds, insects,

airplanes and airships, we can apply them, without introducing any

error, to the case of a medium in uniform, horizontal motion.

In fact, everything depends on the relative, not on the absolute

velocity, which can never be determined. Thus, the velocity of the

medium relative to the earth is 30 meters per second; in relation to

the sun the same air has a velocity of about 28 versts (= 28 kin) per

second; in relation to the stars we obtain yet another figure, and

so on, because the universe is infinite. If the calculations pertain-

ing to flight or other phenomena were to contain the absolute velocity

of the medium, mechanics would have no useful application, since the

absolute velocity can never be known.

Of course, no benefit and no work, for sustaining flight or

other purposes, can be derived by a natural or artificial flying body

or projectile from a mass of air, water or anything else moving uni-

formly in a horizontal straight line, albeit at infinite speed --

this makes absolutely no difference*. Only the velocity in relation

to the earth will change.

*I have retained these lines because even today it is not unusual

to encounter muddy thinking about the law of relative motion even

in the literature.
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Thus, migrating birds make use of favorable winds, but this

only increases their speed; the energy they expend per unit of time

and even the movements of the wings and tail are not affected one

jot.

If, for example, a bird flies 50 versts per hour in still air,

then in a favorable wind blowing at the same speed it will fly i00

versts in the same period of time, doing the same amount of work and

going through literally the same motions. Only in this sense can the

uniform motion of the medium be any advantage to the bird or airplane.

A wind will also facilitate takeoff from the ground.

III

An irregular flow of air

It is another matter when the air flow is nonuniform, as it

is in practice. This nonuniform flow, this gustiness, is used by

birds to fly without expending energy -- it can also be used by a

flying machine to reduce the load on the engines.

Of course, it is obvious why an ascending flow* will maintain

a body in the air without it having to do work. The same properties

are shared by an inclined ascending flow. Such a flow is unavoidable

when a medium moves over a surface inclined to the horizon or meets

a steep mountain.

A vertical oscillating movement of the air may also cause a

body to ascend, but it is more usual to encounter a horizontal

oscillation of the medium, since there are fewer obstacles to this

kind of motion.

We often see hawks flying almost effortlessly, without using

their wings, carried along in their spiral ascent by the general flow

of air. The reason for their soaring flight may be precisely this

horizontal motion of the air.

It is rare that we observe a wind that blows first from one

side and then from the other, changing direction every few minutes.

*For example, the central ascending part of a cyclone or whirlwind.
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It is more usual to note the speed of the wind now increasing by a

certain amount a as compared with its average speed b, now decreasing
with respect to b by a similar amount (a).

Let us consider this very simple case of oscillating motion.

Actually, it is not only a and b that change but also the direction

of the wind. Let us start by examining the phenomenon in a simplified

form.

We shall assume that the hawk is carried in one direction by

the wind at an average speed b. Then to the bird it will seem as if

the wind is blowing alternately from in front and behind at the

speed a; and relative to the hawk the motion of the air will in fact

be thus. You will recall that everything depends on the relative,

not on the absolute velocity.

What does the hawk do? He always keeps the underside of his

wings facing into the wind, so that every gust raises him by a certain

amount, depending on the intensity of the gust a. He is forced to

describe circles, rising or falling, depending on the strength of the

gusts, even flapping his wings at critical moments to assist the air

in its work. Each half circle corresponds to a change in the relative

direction of the air flow by the amount a; a complete circle corres-

ponds to a full cycle of the oscillation of the atmosphere. This

spiral trajectory is carried along, together with the hawk, by the

general air flow at the speed b.

It is quite possible that in reality the phenomenon described

is much more complicated -- my only object is to demonstrate the

possibility of soaring, under certain conditions, simply by utiliz-

ing the strength of a fluctuating wind.

This example, of course, will also apply to a rationally

controlled or suitably designed flying machine.

Many birds soar, others merely make some use of irregular air

currents, i.e., employ them to facilitate flight. It is doubtful

whether insects, with their uncomplicated flying mechanisms, are

capable of the wing movements that make soaring possible.

However, it is not difficult to visualize a machine that would

maintain itself in the air and fly, without any link with the ground,

thanks to its own oscillating motion.

Imagine a sort of aerial aerometer with a wing attached,

supported by a balloon inflated with a light gas (Fig. 5).

This system will always occupy a vertical position. So will the

wing, until a wind begins to blow from the side. Then, rotating about

its axis, it will assume a position slightly inclined to the horizon.

The air pressure due to the lateral gust will force the machine to
rise for a certain time.

But when the wind begins to blow from the opposite side, the

plate, i.e., the wing, will again be slightly deflected from the
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vertical under the influence of the new current, and again the

machine will rise, and so on.

_p_o _°

Fig. 5.

If the machine had weight, the ascent could be controlled or

rather the attraction of gravity could be neutralized, and the machine

would remain at the same height.

The design of such a machine, its efficiency, the load it could

raise, and other pertinent computations must be based on a careful
study of the irregular motion of the wind, i.e., its velocity and

direction as a function of time. Once some such study of this

motion has been made, we shall be able to design a craft that will
stay in the air without any link with the ground and exploit its

various advantages.

I
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THE AEROPLANE OR BIRD-LIKE (AERIAL) FLYING MACHINE*

I

A General View of Winged Flight Winssj Based on

The Most Elementary Experiments and Arguments ¢_

Imagine a small bench (Fig. i) with a horizontal shaft; two

wings are mounted symmetrically on the shaft and in the same plane;

the wings can be rotated through the weight of a load attached to a
cord wound around the shaft.

c

a

e

d

g

[][]

I
i

b

Fig. I.

ab - the shaft about which the cord gi is

wound, the cord being pulled downward by

the load i; ce and df are struts support-

ing the shaft. The arrow to the left in-

dicates the direction of motion.

_his work was first printed in Nos. 43-46 of the periodical Nauka

i zhizn' [Science and Life] (Moscow), 1894. It was printed as a

separate edition_ in the form of the book, from the same font in 1895.

**This article was written as early as February 1894; the major in-

ferences had been drawn even earlier (1890). (Note by K. E. Tsiol-

kovskiy.).
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Let us take up this device and carefully observe the speed
with which the cord unwinds, or the speed with which the wings move.

Before the cord has become completely unwound, let us carry

the apparatus in the direction its axis (shaft) points, and we shall

immediately observe the slowing down of the rotation of the wings.

If we start running, the wings of the apparatus will spin at

an extremely slow rate. In general, the faster the apparatus moves

in the direction of its axis, the slower will be the rotation.

Clearly, the resistance of the air to the flapping of the

wings will increase as the translational motion of the wings par-

takes of the overall motion.

Now I take some large lightweight wings built to resemble

bird wings: as they are raised they pass freely through the air,

and as they are lowered the air exerts a certain amount of pressure

on them -- from below upward -- and the weight of my body is thereby

diminished. Remaining in one spot i wave the wings like a bird; the

faster I do that the greater the pressure that the air will exert on

them. Thus, in accord with the well-known laws governing the re-

sistance of fluids, when i double the speed with which I flap the

wings, the pressure on the wings will increase fourfold, and when I

triple the speed with which i flap the wings, the pressure will in-

crease ninefold, and so on.

It is clear from the foregoing that, at a certain rate of

wing flapping, the pressure on the wings from below will be equal to

the weight of my body plus the weight of the wings. In that case, I

will no longer be pressing on the ground, I will no longer be touch-

ing the ground -- and it is from that instant that my flight will be-

gin.

Fairly straightforward calculations reveal, however, that

under such elementary conditions, with a wing surface of I! square

meters (21/_ square sagenes) and at a weight, of the wings and the

human body combined, of I00 kg (6 poods), the work per second re-

quired to balance out the force of gravity will be about I0 horse-

power (750 kilogram-meters), i.e., the human driver will have to

exert an energy at least 75 times greater than he is usually capable

of (according to LeBon, the average work of a healthy human adult is

even 4 times less than what we presuppose here).

All of this information is generally known, and scientists

have long ago proved that a goose maintaining itself in the air under

the conditions described has to expend the energy of a horse*. But

*This view of flight conditions has given rise to pessimism in avi-

ation thinking.
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let us assumethat I amactually endowedwith such a gigantic energy
enabling meto hover motionless in the air by flapping wings. The
work I do will of course be proportional to the resistance experienced
by the wings and to the speed with which the wings move. The first
quantity is invariable, since it is always equal to the body (which
we assumehere to include the weight of the wings). Consequently,
the work I do will depend exclusively on the speed at which the wings
are flapped. But, on the basis of the preceding experiment (Fig. I),
should I chance upon the notion of running while flapping the wings,
then the flapping speed would decrease, given the samepressure on
the wings. The work required to achieve flight would be reduced by
the samefactor.

Nowsuppose I should run at an extremely fast speed_and sup-
pose I should begin the flight from the roof of an express train or
during a very powerful head wind, and here let the energy required
to achieve flight be comparable to the energy actually available to
me. The former might be even still less: it all would depend on the
rate of the translational motion. The experiments carried out with
the rotor (Fig. I) leave no room for doubt; a missile of this type
has been demonstrated publicly and, on the initiative of N. Ye.
Zhukovskiy [Joukowsky], was recently placed on display at the Moscow
Mechanical Exposition (January 1894). Moreover, there have been
other such projectiles and other such experiments (Marey, Lilienthal,
etc.), which, though more complicated, confirmed the samebasic
truth: to wit_ that as the translational velocity of flying ma-
chines is increased, the work required to keep the machines airborne
varies inversely to the rate of the motion; nay, we can state fur-
ther that, on the basis of both experimental and theoretical evi-
dence, when the speeds are appreciable this decrease will be almost
proportional to the rate of translational motion.

The problem is simply that rapid motion in fluids, even such
low-density fluids as air, is fraught with great difficulties, for
it requires work proportional to the cube of the velocity. For
example, when the velocity is increased fourfold, the work done in
cutting through the air will increase by a factor of 64 (or 43 fold),
while the work done in maintaining the aerial projectile aloft will
decrease by only a factor of 4.

The resistance of the medium_which is barely perceptible
and even negligible at low velocities, becomesan unmanageable burden

at a very fast translational motion.
These conclusions necessarily dampen our ardor somewhat and

cool our enthusiasm for aviation machines. Nevertheless, we cannot

refrain from making some exact calculations in order to ascertain

the degree of advantage involved and the conditions propitious for

flight.

The problem of flying by means of wings is one which is now
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fashionable. On all sides, we hear pronouncements made on a "new"

theory of soaring flight based on the inertia of the medium, i.e.,

on the inertia of air, in the case in point. The flying ability of

birds is now ascribed not so much to the strength of their muscles

as to the inertia of the medium or, expressed more simply, to the in-

creased resistance presented by the alr in response to the fast

translational motion of the flying organisms. Now what is the

"essence" of this phenomenon, and how are we to account for the ex-

periment with the "rotor" (Fig. l) and with similar contraptions

(Marcy, Maxim, and others)?

Imagine that you are standing on a viscous soil, something

like pitch (black tar which becomes a semi-solid at a certain tempera-

ture) covered by grease, so that the soles of your feet cannot pos-

sibly adhere to it.

The longer you stand on this ground, the deeper you will sink

down. If you walk or run over this ground_ your shoes will leave

imprints which will be the shallower the faster you move. Clearly_

the work done in your movement will decrease in proportion to your

speed, for as the speed increases you will have to make your way
out of tracks which become shallower and shallower. No matter how

soft this ground is and no matter how light it is in weight_ its

inertia in response to a sufficiently rapid motion will hinder your

body from sinking into it, and you will then be moving as if there

were a perfectly solid support underneath. We would have arrived

at the same conclusions if we decided to traverse the sticky ground

on a bicycle or some other vehicle, instead of walking or running.

I once had occasion to skate in the autumn over very thin ice which

had just frozen over; it did not break or even crack so long as I

was skating vigorously, but I had only to slow down or come to a

stop for the ice to start cracking, with water beginning to flow in

the cracks around the skates.

II

Outline of an Elementary Design of an Aviation Vehicle

We begin by selecting a system appropriate to a flying pro-

jectile and make certain assumptions convenient to expedite our cal-

culations. It is a most natural and best approach to imitate a bird,

insofar as possible, as the most perfect mechanism most perfectly

adapted for speed of flight and maneuverability. My first calcula-

tions therefore pertained to such a bird-like projectile capable of

flapping its wings. These calculations are highly interesting from



the standpoint of clarifying the phenomenonof flying by animals;
but they do not suit our purposes, since imitating a bird is ex-
tremely difficult to achieve in the engineering sense because of
the complexity of the motion of the wings and tail, as well as the
structural complexity of these organs.*

Weshall seek to imitate the bird only partially, to the
degree feasible.

Consider a soaring bird, i.e., a bird flying without flapping
its wings.

Sometimesthe bird soars or glides on the speedwhich it had
acquired earlier; for example, if it wishes to cometo a stop, say to
perch on a tree or to land on ground_ it will cease flapping its
wings for a while, since it will have to lose its translational
velocity, and gliding flight will be achieved for several seconds as
a result.

Sometimesit glides owing to a slow fall in an inclined po-
sition, and sometimes it soars on gusts of wind; in the first case
the flight is accomplished by the force of gravity, and in the second
case it is accomplished by the energy of the air flowing at a vari-
able speed.

As an example, Lilienthal recently succeeded in executing
soaring flight with his artificial wings, and a gust of wind raised
the renownedresearcher several meters high on one occasion. Even
though this braked his fall, it was still quite hazardous, for there
was a serious danger of the experimenter being turned over (in this
context, I feel it my duty to express my deep sympathy on the occasion
of the news of the accident which befell him in a flight, as reported
in the press).

Sometimesthe soaring flight of birds can be prolonged for an
indefinite span of time on account of continual gusts of wind, i.e.,
enormousair waves. This phenomenonis a complex one, and the scope
of this work does not permit us to go into an explanation of its
causes here; we need only mention that in general soaring flight in
a uniform stream of the atmosphere, requires a certain thrust, with-
out which it cannot be prolonged. In birds, this thrust is brought
about by beating the wings against the air. But what if there are
no such beats, i.e., if our bird were to stop still in the midst of
its soaring flight! What would then hold it up?

Let our projectile be given the shape of a soaring bird frozen
in mid-flight, except that, in the place of the bird's head, we put

*However, Truve was successful in constructing a model which flapped
wings and flew several meters in this manner.
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two propellers rotating in opposed directions and producing a thrust

in a single direction coinciding with the flight of the projectile.

This thrust of the propellers would be capable of sustaining the

translational velocity of the vehicle and could occur, under these

conditions_ at a single height_ or could occur in gaining height.

The propellers are rotating in opposed directions so that they will

not tend to spin our artificial bird about its longitudinal axis s

We replace the animal's muscles by impulsive neutral engines. These

will not require a large fuel reserve (gasoline) and will not require
• • 6

heavy steam bollers or substantlal water supplies ; the power

cylinders can be cooled by air, as is usually done in practice*.

Instead of the tail, we can construct a double rudder -- in

the vertical and in the horizontal planes. The first plane will

control the inclination of the projectile to the horizon, while the

second rudder will control the inclination to the meridian. The

first rudder will chiefly maintain the longitudinal axis of the

projectile in the horizontal direction, while the second will chiefly

allow it to turn to one side. It is desirable that both rudders

operate automatically, as is now being attempted in the case of

steamships.

A double rudder, double propeller, and immobility of the

wings, are features which we have hit upon not for convenience and

economy in work expenditure_ but simply because the design is feasi-

ble; all these departures from the natural flight organs actually

only increase the amount of energy required and are adopted here be-

cause of bitter necessity _

let us not consider this any great tragedy, however, since a

locomotive is not an exact simulacrum of a horse_ any more than a

steamship is an exact similacr_m of a fish.

Nevertheless_ in the form described here_ our projectile will

greatly resemble the structure of a flying coleopterous insect such

as a May-bug or beetle•

During flight_ its rigid outer wings are extended and motion-

less, as in our imitation of a bird. The other wings are slender

semi-transparent wings which the insect flaps to maintain its thrust,

and which correspond to the beating blades of our propellers. The

insect's rudder is provided by its own articulated and flexible body.

*It is true that by utilizing very thin tubes on the boilers, as in

the Serpollet system, it may be possible_ theoretically_ to con-

struct steam engines of extremely high power output.

zllJ
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III

Basic Air Resistance Formulas and Derivation of the Laws of

Flight; Disre6ardin @ the Resistance of the Medium to the

Translational Motion of the Pro0ectile _

We may begin by first finding some of the laws pertaining to

the flight of an airborne vehicle; using a simplified design of such

a vehicle (Fig. 2) in order to render the calculations more con-

venient.

Propellers _

iZi??t

Fig. 2

When the projectile moves rapidly in the horizontal direction

and at a small angle of inclination i of the wings to the horizon_

we have_ in an approximation*:

*Cf. Vol. IV of the Proceedings of the Division of Physical Sciences

of the Imperial Society of Amateurs of Natural Science [Trudy otdel.

fiz. nauk imp. obshch, lyubitelei estestvoznaniya] Moscow, 1891;

formulas (22) and (25) from the article "Fluid pressure on a plane

moving through the fluid."
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21$- 
F = __d. S • V2. sin i" (i)

g 2a

Here F is the force of the pressure of the oncoming air normal

to the wing, a force which, because of the low value of the inclina-

tion angle i, may be assumed equal to the vertical component F of
I

that force (Fig. 2); it will keep the projectile from falling and is

equal to the weight of the projectile and all its contents; d is the

volume weight of the air; g is the acceleration of the force of the

earth's gravitational attraction; S is the area presented by one of

the wings, which are assumed to be equal, rectangular in shape and

symmetrically aligned; a and b are the length and the width of each

of the wings; V is the horizontal translational velocity of the pro-

jectile with respect to the direction of the length of the projectile

or with respect to the direction of the width of the wing; i is the

angle of inclination of the wings to the horizon -- this is not a

large angle; w is the ratio of the perimeter of a circle to its

diameter. We learn from the formula that the pressure of the on-

coming air on the wings is proportional to the sine of the angle of

deviation of the wings from the direction of the air stream. This

law is confirmed by many scientists and was discovered in compara-

tively recent times (Duchmin, 1842; Otto Liliental_ 1889; Marey,

1890; these scientists derived it experimentally; it has been con-

firmed theoretically by Lord Rayleigh in 1876). We also realize from

the formula that the force F of the pressure on the wings depends not

solely on the amount of surface they present but also on the aspect

a
ratio _- of the wings. We put, in equation (i):

2a

whereupon we obtain

(+)F = d" S._" sin i. f (3)
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a

On putting the ratio _- equal to x in formula (2) and seeking

to maximize the expression f <_>, we find that this expression ob-

tains its highest value at x = 3Vs. Indeed, the force exerted by

the pressure on the wings, with their area S unaltered, will be

greatest when the length of the wing exceeds its width by a factor

of 3V2. The force of the pressure will then be increased by only

1/5 compared to the force of the pressure on square-shaped wings,

where

a
m __ I.

b

At an aspect ratio in (2) equal to

a
m

b 2,

the force F will be increased by a factor of 1.16, i.e., almost as

much as (1/8). We realize then that the aspect ratio of the wings

can be profitably increased only in a very modest way, at most by a

factor of two.

Equation (I) does not make entirely explicit those favorable

conditions which we assumed for our calculations of bird-like flying

machines. I therefore consider it necessary to derive here some

other formulas which are in essence identical to those cited earlier,

and which constitute a corollary or a particular case of the preceding

ones.

Consider the equation*

F = s .__a.v2
g n

l+

2a

, (4)

*Cf. Ibid: formulas (13) and (22)



where V is the normal velocity at which the plate is driven; this
n

motion is perpendicular to the wing surface; V is the velocity
P

parallel to the wing plane. If the velocity parallel to the wing

plane is absent (Vp = 0), then the force of the pressure on the wing

will become equal to

F: s'd (5)
g

Clearly_ the factor in the brackets [in equation (4)] is equal to

II +

2a

, (6)

and demonstrates by how many times the pressure on the plate (or on

the wing) will be increased as a result of a translational motion at

velocity V compared to that force (4) when the translational motion
P

is absent. At an aspect ratio of say two:

the factor (6) will revert to

a

w = 2_
b

V

<+)},
n

from which we infer that the pressure force F will increase at an ex-

tremely rapid rate as the velocity of the translational motion of the

plate increases. Let us cite an example: suppose I flap wings_ while

remaining motionless_ at a speed of I0 centimeters a second; this will
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cause a certain air pressure to be exerted on the wings; now sup-

pose that, flapping the wings like a bird_ I at the same time pro-

ceed to run forward at a speed of I0 meters a second (!000 c_sec);

then the velocity V of my translational motion will exceed the
P

(Vp = lO0);speed at which the wings are flapped by I00 times : V n

and this suffices for the force of the pressure on the wings to in-

crease 77 times, in accord with formula (7).

Are these not conditions favorable to flight!? The factor

(6) shows that as the speed of my running increases the air will_ as

it were, thicken_ apparently turning into a mass of steadily in-

creasing density. In the limit, i.e., when the translational ve-

locity becomes infinite, the light gas will have transformed, as it

were, into a completely motionless_ straight, and strikingly slippery

steel track for flying projectiles. If we neglect the friction of

the wings on the air (the wings will offer no other resistance to the

oncoming air, being, theoretically at least, infinitely thin and

flat) and if we neglect the resistance of the air to my body or to

the projectile, then nothing will prevent the projectile from moving

forward at an arbitrarily fast speed, and the work done in achieving

this motion will tend to zero in the limit; in other words, a very

rapid motion through the air would constitute the most convenient

and the cheapest means of communication.

I repeat that equation (I) which serves as the basis for our

calculations of the flight conditions is only a particular case of

equation (3), which yielded us such promising results. By trans-

forming this equation (3), we may obtain the same entirely propitious

conclusions.

After this rather brief digression, let us again resume our

efforts toward compiling the formulas determining the laws and con-

ditions for flight. One of the most important problems to solve is

to find the energy of the engines at which a projectile of known

weight and design will remain airborne. Clearly, the weight Pv of

such a projectile (Fig. 2) involved in uniform and horizontal trans-

lational motion must be equal to the sum of the pressures exerted on

both wings (Fig. 2), i.e.,

2.F. : P (8)
1 V

or approximately, when the angle i is small,

2. F = P
V"

(9)



5o

But the weight P of an airship is composed of many parameters in-
v

cluding: the weight 2P of the wings; the weight P of the fuselage
a c

of the projectile and of its skin; the weight P of the passengers;
P

the weight P of the engines, which consists of two terms: the first
m

P1 refers to the part responsible for keeping the projectile from

falling, i.e., the part that copes with gravity, and the second P2

refers to the part involved in overcoming friction and the resistance

of the air_; we thus have

Pm= P1 + P2; (10)

and, further, the weight Pb of the gasoline or other fuel, in other

words, the weight of the material supply of potential energy for the

liberation of that energy by means of engines, if needed; finally,

there is still the special load P, the weight of all small accessories

on the projectile and of sundry unforeseen items.
We then have

P = 2P + P + P + P + PI + P2 + Pb"v a c p
(ii)

Even though there is a single motor, it can be conceived of as divided

in two parts: the first, a weight PI_ to hindering the projectile

from losing height, and a second, of weight P2_ cutting through the

surrounding medium and thereby blazing the trail ahead.

Dividing both parts of the preceding equation by the weight P

of the entire projectile, we have v

2P P P P PI P2 Pb
I: ___a+ c+ p+ --+ _+ _+ --.

P P P P P P P
V V V V V V V

il
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Naturally, each of the ratios in the second part of this equation is

less than unity; we denote these by coefficients C: C for the wings,
a

C for the fuselage_ C for the passengers, C for the load, C I and C2c p

for the load represented by the engines and Cb for the fuel load_ we
now write:

where

I = 2. C + C + C + C + C + C2 + Cb, (13)a c p i

P

c : a., (14)
a P

V

P

C = co _-; (15)
V

P

C = --P; (16)

P 4

P

C : _-; (17)
V

C I + C2 = Cm; (18)

P

: -_" (_9)
C 1 p ,

V
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P2

C2 -- --" (20)
Pv'

Pb
(21)Cb = _-.

v

Suppose two engines are present in the air ship; we denote

the power developed by the first engine as TI_ and the power developed

by the second as T , with the total power of the two engines as T ;
then 2 m

m + = m . (22)
1 2 m

By bringing the propellers into motion, the motors develop a hori-

zontal thrust f of two types: f keeps the projectile from falling_
I

and f overcomes the inertia of the air and its friction against the
2

wings and against the fuselage of the projectile (Fig. 2). The amount

of thrust of the second type depends exclusively on the velocity of

the projectile, its design_ and the surface area of the wings; the

first type of thrust in turn depends on the weight of the ship and on

the angle of inclination i of the wings to the horizon (Fig. 2); and

of course

f = f + f • (23)
1 2

As far as the first type of thrust is concerned, for the time

being_ and examining Fig. 2_ we find the following expression for

that thrust when the projectile is maintaining a constant velocity

and a constant height above sea level:

fl = 2" F" sin i. (24-)
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If the angle i is small_ then_ from equation (9) we obtain_

in place of this last equation (24), the formula

f : P .sin i. (25)
I v

On the other hand_ we have

fl" V = T I. Ch;
(26)

here Ch, or the propeller coefficient_ shows how great a part of the

total power of the engine of the first type T I is utilized as a re-

sult of the propeller action. Note that Ch will approach unity as

the surface of the propeller increases; however_ because of the

friction of the propeller blades against the medium_ Ch will not

exceed 3/4. The last equation is used to express the work done per

second by the thrust of the ist type fl at a horizontal projectile
velocity V.

Now expressing the fact that the power T of the engine is
i

proportional to the weight P of the engine and to the specific

energy E_ we write i

T = E" P . (27)
I I

Here the energy E is the work done per weight unit of engine per

time unit_ or the quotient from the division of the power of the

motor (together with its generator_ e.g._ a boiler in the case of

steam engines) by its weight.

From the three last equations and from equation (19)_ by

eliminating fl_ TI_ and PI in succession_ we obtain

v. sin i : c1. _.c h. (28)
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On substituting in equation (3)

P
V

r --

2

according to equation (9), and then eliminating sin i from the last

formula (28) by means of equation (9)_ we obtain

P
v

= (29)

2"d-S-V-Cl'f h

This formula contains the expression for the energy E re-

quired from the engines of the flying projectile to sustain it in

the air at a certain height and at a translational velocity V. If

this velocity is not large, for example if it does exceed the

velocity of birds, and also if the wings of the projectile are not

particularly large, and if accordingly the friction against the on-

coming air is not large, then the power T2 of the second engine may

be neglected as a comparatively small quantity, and we shall then

have information on the total power T of the engines, in accord
m

with equations (18) and (26); namely, we have

Tm = T1 = E.C1.P v.
(3o)

The energy E of the engines, the energy required for flying,

is in general inordinately high, and therefore let us analyze the

conditions under which it would attain its least value. From

equation (29)_ it is clear that the specific energy E of the engines

is inversely proportional to the translational velocity V of the

projectile_ i.e._ the greater the velocity of the projectile, the

less the energy required to propel it; hence, we must impart to the
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projectile a shape as slender and smooth as possible (as in the case

of birds and fish) and we must avoid giving the wings very large di-

mensions, in order to avoid an inordinately great increase in the

friction and in the resistance of the medium. Furthermore, we must
transfer as large a portion as possible of the total lifting force

of the projectile to the engine of the second type, designed to cut
through the air. Formula (28) confirms the concepts we expressed

earlier, to a partial extent, on the ease of flying, such as it was

conceived of in the first days of speculation on this subject. In
fact, this formula reveals that when the velocity V of the transla-

tional motion of the projectile is very high, the energy E and ac-

cordingly the work of its engines [equation (30)I is extraordinarily

small; it becomes zero at infinite horizontal velocity, i.e., the

air presents an entirely motionless support for the wings, for in-
stance in the manner of rails on a railroad. As for the labor in-

volved in cutting through the air with a small and sharp projectile,

it seems to be so trivial to us' The horizontal velocity seems

little short of infinite to our imagination' Pursuing this analogy,

the work of flying resembles the motion of a projectile over a firm

and very smooth ground.
The following important inference from equation (29) con-

sists in the notion that the energy E is directly proportional to

the ratio Pv:S, i.e., to the ratio of the weight of the projectile

to its wing area; now, if the weight of the projectile increases in

proportional to the increase in the wing area, then no great energy

will be required. Put brieflyj the energy will be independent of

the mass of the projectile, provided the wing area is proportional to

the weight of the projectile. It turns out, apparently, to make no
difference whether the flying machine is built to carry one man

aloft or a thousand men aloft. As we become better acquainted with

the theory of airfoilsj we see that this encouraging conclusion is

drastically restricted in practice.
Further, it is clear from formula (29) that the energy E is

inversely proportional to the wing area. It is accordingly useful,

to a certain extent, to have the greatest possible wing coefficient
(C).

a The energy is inversely proportional to the volume weight of

the air medium d, i.e., as the flying altitude increases, the energy
required from the engines propelling the aerial machines will be-

come greater.

The energy E is inversely proportional to the weight of the

machine_ or to its coefficient C . This means that the greater the
1

part of the total lifting force that we assign to the engine, the

smaller the engine power may be.
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The energy E is inversely proportional to the value of the

function f( ). This function of the aspect ratio _- of the wings

will have a maximum when the wing aspect ratio is 31/s. But an ob-

long wing will be heavier than a square wing of the same area, so

that, in practice, taking other conditions into consideration, we

a
can have a -- ratio of at most two. Then

b

f <_-)= f (2) = 0.76:g,

and in the case of a square wing

f (i) = 0.66:g,

i.e., less by only 1/6 to I/7.

All of the conclusions presented here are, of course, only

approximate. Actually, the variables chosen are interdependent as

well. For example, when the projectile rises into the rarefied

layers of the atmosphere the energy will have to increase; but the

velocity of the projectile in a rarefied medium will increase be-

cause of the decreased resistance presented by the medium, and the

energy will decline for that reason. Again, flying projectiles of

large size will cut through the air with comparatively greater ease

and therefore will have a greater translational velocity V, so that

the engine energ-ywil! be reduced [in accordance with equation (29)].

In sum, we see fairly clearly that the problem of how to de-

termine the energy of an airborne craft and the laws governing its

motion is a highly complicated question and still requires a great

deal of work. For the time being, we have only been feeling out

our ground in a rough way and now, with some idea of what it is

like, we can proceed with greater boldness.
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IV

Theory of the Strength of the Wings on an Aerial Vehicle

We are obliged to copy the shape of the wing and its position

relative to the projectile's hull from the example set by birds.

Let us assume to start_ for the sake of simplicity in our calcula-

tions_ that the surface of the wing has a rectangular shape and a

horizontal position, and that the long side a of the wing is normal

to the longitudinal axis of the fuselage.

Assuming the wing to be made of some material of uniform

density, we find the following condition for equal resistance to break-

ing strain: the thickness h of any portion of the wing will be di-

rectly proportional to its distance from the thin terminal portions

of the wing.

We consider it superfluous to prove this theorem here. A wing

designed in obedience to this law for economy of weight will have a

transverse cross section as shown in Fig. 3 or_ more accurately, one

such as shown in Fig. 410 .

Note that, in the derivation of the preceding theorem, we

neglect the actual weight of the wing itself, as a quantity rather

small compared to the force of pressure exerted on the wing [equa-

tion (9)]°

The resistance to breaking strain at the point where the wing

is attached, where it is of thickness h, is expressed, in the case

of a force acting on the middle of the wing (or on the center of air

pressure of the oncoming stream) by the following ratio:

I.h2.K.D

3L • m. D I

(3_)

We shall not bother to prove this theorem either_ in view of its

elementary nature; clearly, from this formula we see that the wing's

resistance to breaking strain is proportional to the width I of the

wing, to the square of its thickness h2, to the strength of the wing

D
material, and to the density ratio -- (D is the natural density of

D 1
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the wing material, D1 is the mean density of the same material when

subjected artificially to compression or thinning; we shall explain

this shortly); moreover, the wing's resistance to breaking strain is
inversely proportional to the desired strength m of the wing (for

_which the modulus of rupture K decreases m times) and to the length

L of the wing.

, °B _

Fuselage ", _-_

s Wing\
k

Fig. 3

| !

\ /

Fig. 4

Let us select the best material, for instance steel of density

D1 and of strength K; the rupture modulus (K) for the best grades of

steel will not be greater than 100 kg per square mm of the cross
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section. If we fashion a solid wing of this material, the weight

will be large, and the resistance to breaking strain will be quite
small. How are we to deal with this situation? If we could but

rarefy the material to any arbitrary extent, the weight of such a

low-density wing would be less and its strength would be greater.

This flows from the last formula; actually, by leaving the surface

and weight of the wing unaltered, but thinning out the material to

one-half its density, we are afforded the possibility of also

doubling its thickness h, so that the resistance to breaking strain

will be increased by 4 times; the decrease in the density D, on the

other hand, will mean a decrease of only twofold in the resistance

to breaking strain; the net result then, in general, is that this

resistance will be doubled. At first glance, changing the density

of the material seems to be perfectly inconceivable, at least over

a wide range, and in fact altering the density of steel by working

the steel, is feasible only to an extremely small degree. It can

be diminished far more drastically by melting the steel down with

some low-density materials, for example with aluminum, but all of

this will still fail to meet the problem.

Let us try another approach: we now vary not the physical

density but rather the average overall density of the wing, making

it of small high-density components with the greatest possible dis-

tances between the components. If, for example, we were to con-

struct the wings of hollow metal tubes coated with some overall sur-

face, then the average density of this type of wings would be far

less than the density of steel. There exist many practicable ways

to reduce the average density of structural materials. Nature has

not neglected this approach either; for example, the bones of many

animals are either hollow (i.e., filled with air, as in the case of

birds), or are composed of a multiplicity of crisscrossing rods or

plates covered by an overall osseous surface (the skull of humans

and other animals, the heads of the large arm and foot bones). Our

giant bridges and various huge structures that have gone up in

recent times are also composed of a whole veritable labyrinth of

beams and cross-beams, even though not always covered by some

general surface. If we were to use such a covering on the Eiffel

Tower, for instance, as a casing, we would find the average density

of the tower to be similar to the density of the wings we are re-

ferring to. _g

In expression (31)_ the ratio _ is an important one. This

1

is the strength of the material per unit density D 1. If we consider

K
a long list of the materials used in industry, and determine the D1

ratio for each of these, we shall find aluminum alloys to be most
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suitable and toughest (cobalt, nickel, and other expensive and little-
used materials are not considered here). Without going into the
technical details of these alloys, we shall take them as materials
for our wings and we shall reserve the possibility of arbitrarily re-
ducing the average density D, assuminghere that the tensile strength

K_.of the material will decrease in proportion to the decrease in the
m DI D
density. It will decrease by -- times, and the factor _]will appearin formula (31). D

Decrease in density is achieved in practice only by the ex-
tremely artificial construction of a "porous mass." This is a par-
ticularly difficult task, when the elements of this masshave to be
very fine. And the wings of the projectile will be such. A slight
change in the density is of course not all that difficult, but it is
no easy matter to thin out a material by 100 to 1,000 times.

For the wing, a sufficient resistance to breaking strain must
be equal to the force of the pressure F exerted on the wing by the
oncoming air stream, i.e., to half the weight P of the projectile.

v

On the basis of formula (31), then, we write

I • h2. K" D Pv

3.L.m.D I 2

(32)

The weight Pa

equal to

of the wing as a triangular prism (Fig. 5) is clearly

P = --1/2.L. I.h.D. (33)
a

We saw that the most favorable ratio of the length L of the

wing to its width I did not exceed two

a L

b I

We consequently have, in addition, the equation
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L= 21. (34)

On eliminating L from equations (32) and (33), we find

h2- K-D

- Pv'
3 • m • D I

(35)

P = 12. h.D. (36)
a

Now, on eliminating from equation (35) the thickness h of the

wing, by means of equation (36)_ and on determining the weight P of

the wing, we obtain a

#
12

D I
P = _ .
a " #K" Pv D'm. (37)

Clearly, from this formula, the weight P of the wing will be
a

proportional to 12 at the same weight P of the projectile, i.e., pro-

portional to the wing area, since S = L • I, or, according to equation

2
(34), S = 2- I .

Again, clearly_ from formula (37), the weight of the wing will

be inversely proportional to the square root of the strength of the

K

material _, and will be directly proportional to the square root of

the average density of the porous mass forming the wings D or inverse-

D I

ly proportional to the square root of the thinning out _- of this ma-

terial, e.g._ steel, aluminum, etc.

Thus_ the more porous we make the wings, the lower their weight

will be, for the same projectile and the same wing area. But there

is a limit, of course, to this thinning-out process: namely, the
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h
fraction _ must not be close to unity, for otherwise the wings

I

would turn into spherical masses and since during their transla-

tional motion, they would thereby present a great resistance to the

oncoming air, they would be extremely ill adapted to performing
their function -- that of keeping the projectile airborne. It might

even occur to us, and not without reason either, to fill the porous

mass of the wings with hydrogen; then the internal partition members

of the wings might no longer be necessary, but in that case our
aerial vehicle would have become transformed into an aerostat.

Let us transform equation (37). We saw that the energy of the

projectile remained unchanged when the weight increased in proportion
P

to the wing surface, i.e., when the ratio __vremained constant. We
will assume S

2
or, since S = 2I , then

P
v

_- = A,

P
v

212

Now, on eliminating 12 from (37) by means of this equation, and then

on eliminating P or the weight of the wings from the same equation,
a

since this constitutes, according to equation (14), a small part C

of the projectile weight Pv' we find a

J3"m'Pv'DI'DCa =
4.A2.K

Hence, it is clear that the wing coefficient Ca will increase

in proportion to the square root of the total weight Pv of the aerial
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vehicle. Let me clarify this conclusion: since we possess a certain

maximum energy E in the engines, we may construct a series of flying

projectiles of different mass. All of our projectiles will fly when

the area of their wings corresponds to their weight [equation (29)].

But the relative weight of the wings

P

C = __a
a p

V

will then increase more and more as the projectile itself is enlarged.

Briefly then_ in small vehicles the relative weight of the wings will

be small, in large vehicles it will be large and will swallow up the

projectile proper. For example, if the weight of the projectile in-

creases successively by 4, 9, 16, 25, 36 times, then the relative

weight of the wings on these projectiles will increase successively

by 2_ 3_ 4, 5, 6 times_ but the absolute weight of the wings will

then be given by the numbers: 8Pa, 27Pa, 64PaJ 125Pa_ 216Pa, where

P is the absolute weight of the wings on the smallest projectile in
a

question.

This conclusion following from equation (38) presupposes an

unaltered mean density D of the wings. If it is altered, the rela-

tive weight C of the wing may remain constant. This requires that
a

the product P D in formula (38) remain constant. By putting
V

P • D = B, (39)
V

we see that the mean density D of the wings is inversely proportional

to the weight P of the projectile; then the relative weight C of the
V a

wing will be the same for both large and small aerial vehicles.

Consequently, the wings will have to be made increasingly more

porous to the degree that the weight of the projectile is larger,

until, at a certain projectile size, they are bound to turn into im-

practicably bulky shapes which function poorly.

Thus, as the weight of the projectile is increased, we face

one of two possibilities: either the wings absorb an increasingly

greater share C of the total weight of the projectile, while their
a
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density D remains unchanged, or else their density D can decrease in

proportion to the increased weight of the projectile but they will

become transformed into a porous mass incapable of cutting through

the air and incapable of fulfilling its function.

Either alternative shows that the size of the flying vehicles

is limited.

With the aid of the last equations given, we can also draw

more specific conclusions.
Let us calculate the size and the area of a wing made of the

best available steel. In equation (13), we put all the coefficients

equal to each other, with the exception of the reserve coefficient C

which, we shall assume, is twice the value of the others, i.e.,

C = 2. Ca and I = 9" C a ,

and, since one of the coefficients, to be specific the passenger co-

efficient Cp, may not be less than 50 kg (3 poods being the weight of

a lean man of moderate height), then

P = 50 kg, and P = 450 kg (27 poods);
a v

in addition, we put in equation (37)

D I = 7; m = 5; K = 700,000 kg/square decimeter,

or 70 kg per square mm of cross section; D = 7 (i.e., a wing of solid

steel with no cavities); we then compute the width I of the wing at

0.85 meter and, consequently, the length of 1.7 meter. Quite a low

figure! But we see from the formula that the width I of the wing is

proportional to the fourth-power root of I/D. Therefore, if the mean

density D of the wing is reduced by 16 times, say_ by making the wing

of hollow tubes, hollow crosspieces and such, then the width I of the

wing and its length L will be doubled, the area will in turn increase
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from 1.4 square meters to 5.8 square meters. But would not a wing of

that type be inordinately "bu!ky_" i.e., would it not take on a bulky

form? From equation (36) we find that

h %
- (40)

I I3D _

or, in other words, we have an expression for the "bulkiness" of the

wing which reveals what part is accounted for by the thickness h of

the wing with respect to its width I. Assuming here, according to

the above conditions and calculations,

7
P = 50 kg; I = 1.7 meter; D = --
e 16

(close to the density of dry spruce wood), we compute

h I

I 44'

which is not at all "bulky." If we again decrease the mean density

D of the wing by 16 times (such physically low-density bodies are

unknown to us), the dimensions of the wing would be increased twice

again, and the "bulkiness" would now be expressed by the fraction

1/22; the wing area would now be 32 square meters,

I = 3.4 meters; L : 6.8 meters.

h
We may offer some general laws concerning the "bulkiness" --. From

equation (37), we find I
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/_ 2Pa" K
i = - -- (41)

3.o.ol.Pv._

and on eliminating I from formula (40), we now find

h 41 _ v
T = d

a

(_)

h

which means that the "bulkiness" _- of the wing is inversely propor-

tional to the fourth-power root of the mean wing density D.

We now proceed to determine the maximum value I and area S of

h
the wing, assuming the maximum possible -- ratio of the wing and

I

maximum strength of the wing material. To do this we begin by elimi-

nating P from equations (40) and (42) by means of the formula
a

P
a

C = -- ;
a P

V

P
V

find the ratio _-, which we eliminate from equation (40);and then we

after all that, we find

I Ca'K-- (43)
I = -_ (_) Dl.m.

It is now clear that the dimension I of the wing is proportion-
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h
al to the _ ratio of the wing', to the strength of the material in

I
K

its customary dense form 3 _-, and to the wing coefficient C •
a

We assume, for example:

K_. = I00,000 ;
h_.i= 201---(bulkiness); D1

C = 1/9 and m = 5 (firmness); then we compute: I = 3.6 meters,
a

L = 7.4 meters, S = 26.64 square meters.

Now let us mentally construct a broad variety of flying ma-

chines differing greatly in weight P; the largest dimension I of

the wing will be independent of the weight of the projectile, ac-

cording to formula (43), and therefore we shall impart to all of the

machines wings of the same dimension I and shape, although of dif-

ferent density, and accordingly of different weight. The weight of

the wings will be proportional to the weight of the projectile.

Then, on the basis of equation (29), we may conclude: the

engine energy E required for winged flight is, other conditions

being equal, proportional to the weight P of the projectile. The
v

tremendous differences in the translational velocity V of the pro-

jectiles are not taken into consideration in this conclusion; in

fact, the velocity of larger, heavier projectiles would be far

greater, so that the energy will not increase so rapidly with the

weight of the projectile, as we had surmised earlier.

Once we know the area of the wings for a given aerial vehicle,

we will be able to use equation (29) to determine the absolute value

of the engine energy E for a given projectile weight and different

coefficients; but the difficulty now lies in the fact that we still

do not know their values, nor the magnitude of the translational

velocity of the vehicle.

We shall now proceed to a solution of these problems.

*This sex-_es to confirm the preceding inference that "bulkiness" is

proportional to the dimension I of the wings.
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V

Horizontal Translational Velocity of the Aeroplane

and the Energy of its Engines

Equation (29) implies that: the faster the translational

motion of the flying vehicle, the less will be the energy E of the

engines of the first type (the energy required to sustain the pro-

jectile aloft). But in response to that motion the air stream will

also be exerting a pressure on the fuselage of the projectile and

on its wings, offering resistance to the medium even at zero angle

of inclination to the horizon. In order to overcome this new sum of

the pressures on the fuselage and wings, a thrust of the second kind

f2 is required in addition, as well as the engines capable of de-

veloping that thrust, h

We saw [equation (43)] that fairly "bulky" wings (with the -_

ratio not below 1/20) are mandatory for large projectiles, i.e.,

their thickness h constitutes an appreciable portion of their width

and length; so that they experience not only friction with the air

as they move but also resistance of a different kind dependent upon

the degree of their "bulkiness" and on the inertia of the air. Which

"bulkiness" is most advantageous for the wings and what relative wing

area is most practicable is something we will not undertake to solve

here.

Imitating the flying organisms, we might say: the wing should

not be very "bulky" and the amount of its surface area need not dif-

fer greatly from the surface area of the fuselage itself.

If the wings are not very "bulky,"

h I

T < _"8,

and their area is equal to the area of the fuselage, then clearly the

resistance they present to the oncoming air stream will be approxi-

mately equal to the resistance of the fuselage and in any case will

not be greater than the latter. For the projectiles we have in mind_

the pressure on the fuselage can be determined and then multiplied by

several times (n + i) in accord with the number of times the total

resistance of both wings and fuselage is greater than the resistance
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of the fuselage alone. Now, if the wing area is double (n) the

fuselage area_ then we assume that the resistance presented by the

wing area is as many times greater than the resistance of the

fuselage; the total resistance (n + i) will then be 3 times greater.

The pressure exerted by the air on a round plate (of radius

r) in rectilinear motion normal to the plate at velocity V_ will be

approximately equal to

2

d V2, (44)
g

where d is the volume weight of the air_ g is the acceleration due

to gravity_ and r is the radius of the mean cross section through

the projectile. The pressure on the fuselage is several times less

(U times less) than would appear from formula (44), because of its

bird-like shape (only three times more sharply tapered); it is thus

equal to

_. r2. d.V 2
;

g'U

where U is the utilization factor of the fuselage shape.

r _
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But the resistance of the wings increases this pressure by

(n + l) times, since the surface area and the resistance of the wings

alone is n times greater than the surface area and the resistance of

the fuselage (Fig. 5).

Thus, the resistance of the projectile 3 being independent of

the inclination of the wings, or in other words the thrust of the

second kind f2' is equal to

2 .V2(n + 1).
f2 = _.r "d (46)

g'U

The work of the second kind, T2, done by the projectile in

cutting through the air, per unit time, is expressed by the formula

T2 = f2"V" (47)

But since the propeller does not have a fixed support, as

the wheels of a locomotive have, for instance, a part of the total

work T2 done by the engines of the second kind is performed fruit-

lessly and only the remaining portion of the work (denoted by the

coefficient Ch) is available for continuing the path of the pro-

Jectile; we thus have

T2-C h = f2.V. (48)

Hence, by eliminating f2 by means of equation (46), and then

determining T2 from the resulting equation, we find

T2 = w'r2"d'(n + 1)'V3 (49)
g. Ch. U
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or the expression for the power developed by engines of the second
kind. Here we mayput

w2 = E'P2' (5o)

since engine work is expressed in terms of the product of its unit

energy E and the weight P ; then, by eliminating P from the re-
2 2

sulting equation with the aid of (20), we find

E'PvC 2

w.r2-d.(n + I)-¢

g.Ch.U

and hence

(51)

We cannot use this formula to determine the translational velocity V

of the projectile, for we do not know the energy E of its engines.

But we can determine E once we have eliminated V from equation (29).

On doing this, we find

_-_'. _ln. (n + i)

E : . (52)

Let us recall that f (_)here is expressed by the equation
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2a2g + V)

where
a

_- is the ratio of the length L of the wing to its width !.

Pro )ellers

wt
Rudder

Fig. 6

Longitudinal vertical cross section.

Clearly, the hull of a projectile carrying a man aloft cannot

be very small: the width and the depth (2r) must be at least I meter,

and the length must be at least i0 meters. 0nly with such an aspect

ratio, combined with the smooth shape of a fish, could it easily cut

through the air and achieve rapid motion. If we were to fashion the

hull in an elliptical shape leaving the same area of the average cross

section through the hull but squeezing it in from the sides and

raising it slightly upward_ room could be made inside fairly easily

for even 8 to i0 people. Doubling these dimensions, we find that an

accommodation space of I0 sagenes (_ 20 meters) in length and one

sagene (_2 meters) in width and depth could comfortably accommodate

as many as 40 passengers (Fig. 6). Thus, the weight P of the pro-
V

jectile_ given the same dimensions r of the hull, is a variable, and

in that case we may state, by using the last equation_ that the

energy E of the engines must be proportional to the square root of

the weight of the entire projectile plus all its contents, i.e., pro-
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portional to P .
V

Formula (52) was derived under the condition that the resist-

ance and area of the wings are n times greater than the resistance

or area of the hull to the oncoming air stream. But the hull sur-

face_ assuming it to be derived from rotating about a chord an arc

of a parabola taken near the apex, is approximately equal to

2_. TT (2r) • (2Or) 80 vr'r 2
3 3

(53)

or_ still more roughly_ to 80 r2; consequently_ the area of the

wings (2S) will be expressed by the formula

whe nce

2S = 80 r2,

S
n = --. (5k)

40.r 2

We assume that all the coefficients C are equal_ so that the

coefficients of engines of the first and second kind_ CI and C2 in

equation (52), may be assumed equal; but would this be an advantage?

The energy of the engines is minimized when the product C3C in
12

equation (52) is maximized. Leaving the sum of the coefficients

unchanged and equal to

I I 2

9 9 9

we now write
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Cm = C1 •C2.

We now have to seek the maximum of the function

F = C3"lc2' (55)

in which we eliminate C2 by means of equation (18); we then put the

derivative of the function so obtained equal to zero; this yields us

dF = 3 C .C_ 3 O; (56)
dC_ m " 4CI =

and on solving this equation we have

3 and C2 i (57)cI : -g-c m = -.ft.cm.

Thus, in order to limit ourselves to the least energy E of

the engines, we must distribute their total weight Pm over 2 parts_

one of which, designed to cut through the medium by means of the

hull and wings, will have to be 3 times as great as the other,
which is designed expressly to keep the projectile aloft. In other

words_ the work done by the engines of the 1st type must be triple

that done by engines of the 2nd type_ or the work done to maintain
a certain optimal velocity of the aerial vehicle requires only 1/4

of the total work done by the engines.

We can now analyze in detail the value of all the variables

we find in equation (52), and we can also compute the energy re-

quired to sustain flight.
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The weight Pv of the projectile must be at least 450 kilo-

grams (27 poods); but this weight may increase to a certain limit
at which the meandensity of the wings will be equal to the density
of steel or of someother substance; in response to this increase
all the coefficients will also increase proportionally, whereupon
the energy E will be proportional to the square root of the weight.
For example, if a series of aeroplanes carries l, 4, 9, and 16 pas-
sengers, respectively, then the energy of the engines will have to
be increased respectively as l, 2, 3 and 4.

The diameter of the meancross section of the hull (2r) must
not be less than 1 meter; if the area of this circle is squeezed in
from the sides without altering the magnitude, to form an oblong or
elliptical shape, then the resistance to the air will be barely af-
fected at all, while the height of the resulting cabin will be
adequate for comfortable seating (about 2 arshins [1.5 meter]).

The propeller coefficient Ch has a value not exceeding 3/4.

The energy E also depends on the volume weight d of the
medium. Indeed, engine energy in a projectile rising high up in
the air will increase in proportion to the square root of the rare-

1
faction n of the upper layers of the atmosphere. At a height of

d
I0 versts [ii km], where the air is rarefied to one-fourth its
density at sea level, twice the energy expenditure will be re-
quired from a projectile of the sameweight; at a height of 5 versts,
one and a half times the energy will be required; at a height of one
verst or less, the energy changewill be as insignificant as in the
case of meteorological fluctuations in the density.

The area of a single wing (S) is expressed in the formula S =

= 2I 2, and since we have, from equation (43):

C "K
a

then the area S is

c2. 
s ..... .

9
1
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The coefficient n depends on S and_ actually, is just as con-

stant a quantity.

The coefficient U is the utilization factor of the oblong

shape of the hull. U will be close to 50 when the shape of the hull

is well chosen and when the aspect ratio is I0.

The product (C_C2) in the radicand in equation (52) is shown

on the basis of formula (57) to be

3 C2 = --.C ;
Cl " 256 -

(59)

so that the energy E will be inversely proportional to the coeffi-

cient C of the engines.m

We now have all the data needed to compute the energy E re-

quired to sustain flight. We put:

P = 450 kg (27 poods) = 2r : i meter;
V

a

u : 5o; d = 0.0013; _- : 2;

sec2; 2 3
g = 9.8 meter/ S = 27 square meters; Cm = 9 ; Ch - 4"

We then compute E = 18.6 meter/sec, i.e., on the average the

engine (together with a power generator) must generate work of

181/_ kg-meter per second for each kilogram of its weight_ or it

must lift itself 181/2 meters per second. This corresponds to 21/2

horsepower work units per i0 kg-m of weight of the machine, or

about i horsepower per i0 pounds of weight.

For a long time I mistrusted this conclusion and continued

to search for some errors in the formulas; but unfortunately never

turned up any such errors. According to the drawing (Fig. 7) below,

we can visualize the relative dimensions of the wings. The true
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length of the hull is I0 meters, the width with the wings extended

is about 15 meters; 2/9 of the total lifting force of the aerial

vehicle is absorbed by the weight of the wings, and the engines ac-

count for an equal amount (6 poods); there remains 5/9 of the

lifting force (15 poods), which is distributed over the hull (3

poods), fuel (3 poods), passengers (3 poods), various aeroplane ac-

cessories (3 poods), and finally the 3 poods of supplies. The

engine energy required for flight and for lifting one man aloft,

even though less than the energy which Maxim claims to have achieved,
is nevertheless 18.6 times greater than the most powerful Yakovlev

gas and kerosene engines, 40 times greater than the Otto gasoline

or kerosene engines, and 186 times greater than the energy of con-

ventional small steam engines.

By the way, we may cite other calculations for the same pro-

jectile. For example, formula (36) yields us information on the

mean wing density; it turns out to be 2/99, or about 1.50 the density

of water; actually, the average wing density should be 20 times less

than the density of dry spruce wood (0.4). It would be a bit diffi-

cult to construct such a wing.

But if the weight of the projectile and of all of its parts

were several times greater, then the wing density would have to be

increased by the same number of times, even though its dimensions

could not be increased. Actually, by eliminating the weight P of
a

the wing from equation (42) by means of equation (14), we find

ev 4 K3.c 2

D = _-'_ " a

27 D3" m3' (60)

i.e._ the wing density D must increase in proportion to the weight

Pv of the projectile, in order to avert any change in the "bulki-

h

ness" -- of the wing and in the ratio of the weight of the wing to
I

the weight of the projectile. Let us now compute the translational

velocity of our projectile lifting aloft a single man and capable

of accommodating not more than four. To do this, we make use of

equations (51) and (57), from which we find: V = 35.4 meters/sec,

or 128 km/hour. Not bad, this speed! In 3 hours, we could fly

from Moscow to Nizhniy-Novgorod.



The volume of the hull of the projectile is such that it
could easily accommodateup to 4 persons. Weshall therefore cite
here the data referable to this projectile capable of lifting aloft
one, two, or four persons_ respectively. Its dimensions remain the

same: hull length lO meters, average width 1 meter (height of mid-

section about 2 arshins, width about 1 arshin); wing width 3.67

meters, wing length 7.34 meters, wing surface 27 square meters,

surface of the two wings 54 square meters, hull volume at least 4

cubic meters.
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The coefficients also remain unchanged, but the absolute

masses of the engines, wings, hull, etc., increase in proportion to

the number of passengers, and this proportionality is a direct and

inevitable consequence of the increase in the number of passengers.

*per kilogram of engine weight.
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Hence we see that the weight of the wings is equal to the

weight of the engines, and ranges from 3 to 24 poods. The energy of

the engines per second per kilogram of engine weight ranges to 37

kilogram-meters. This energy (for lifting 4 persons aloft) is 37

times greater than the energy developed by the Yakovlev engines, for

which a single steam horsepower corresponds to 4 poods of weight

under favorable conditions. The engine power reaches 149 HP; about

40 HP would be expended per person on the average. The wing is

lightweight, and each square meter of the wing weighs on the average

from 2 to 7 kg; the mean density ranges from _50 to 1/12 of the

density of water, i.e., is 20.5 times lighter than spruce wood. It

is left to the reader to judge the extent to which such a wing could

be realized in practice. My personal opinion is that such a wing

could be constructed indeed, albeit only at great pains. The non-

stop flying time of the projectile extends from 3 to 6 hours. As a

basis, we assume gasoline engines requiring only _2 kg gasoline

per horsepower; if a steam engine is used, an appreciable supply

of water will be required, and this will reduce the flying time by

several times; the gasoline supply we assumed to be only half the

weight of the engines; the tensile strength of the steel is assumed

at 70 kg per square mm cross section and the rigidity, at 5.

These results do not appear particularly satisfactory to us

from the standpoint of feasibility; let us stretch our point to the

ultimate: as we shall assume the wing surface to be far larger.

We see from formula (43) that the size of the wing is pro-

portional to E/m, i.e., it is proportional to the strength of the

material and is inversely proportional to the desired rigidity of

the wings. If we were to double the strength K of the material, or

if we were to risk decreasing the rigidity m of the wings by the

same number of times, then the dimensions of the wings would end up

twice as great, and the wing area would be 4 times as great. On

reducing the rigidity to 21/8 (a coefficient inadmissible in prac-

tice), we bring the surface area of the two wings to 216 square

meters. Reports indicate this to have been the wing surface area

in Maxim's flying machine. I am somewhat astonished by the fact

that he was successful in building wings of such enormous dimen-

sions; they were probably fitted with various masts and braces,

like Lilienthal's wings, and accordingly had to offer a great re-

sistauce to the oncoming air stream. For that reason the velocity

of the projectile could not be at its greatest, and consequently

the energy E could not be at its least value.

Disregarding all that, let us assume that our projectile is

equipped with just such wings but of smooth shape and with no parts

protruding outwards, so that we shall not have to take into account

the resistance presented by such parts. According to equations

(52) and (54), if we at the same time double the space occupied by
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the hull, i.e., if we double r or increase the projectile volume by
8 times, then n will remain the samebut the energy E of the engines
will be reduced to one-third. The spacious interior by the hull
will enable us to accommodatemanypassengers, as manyas 64, in
flight.

Herewith are the general data for such projectiles, similar
to those outlined, but of different density and weight. The height
and width of the hull at the midsection will be 2r = 2 meters, the
length 20 meters, the surface area about 80 square meters, the volume
not less than 32 cubic meters (varying weight); the surface of the
two wings 216 square meters in area_ the average "bulkiness" ratio

h = 1/20, the length 14.68 meters, the width 7.34 meters, the wing
I

rigidity 21/_.

Let the passenger capacity for eight projectiles be_ respec-

tively: i, 4, 9, 16, 25, 36, 49, and 64; the weight of each

passenger plus supplies will be assumed at I00 kg_ so that their

weight total will be, respectively: i00, 400, 900, 1600, 2500,

3600, 4900, and 6400 kilograms, i.e., up to 61/2 tons. The same

figures apply to the weights of the engines in the various projec-

tiles; the same figures likewise apply to the masses of the hulls

and the necessary appurtenances for them and for the passengers;

and the same will apply, respectively, with regard to the weight of

the two wings. The weight of the gasoline to power the engines

will also be assumed proportional to the number of passengers; it

is expressed by half the figures listed. In sum, we have now de-

termined the total weight of the projectiles, which will be, re-

spectively: 450, 4050, 7200, 11,250, 16,200, 22,050, and 28,800 kg,

i.e., from I/2 to 28 tons or from 27 poods to 1,728 poods with some

to spare.

We compute the energy E of the engines to be_ respectively:

9.3; 18.6; 27.9; 37.2; 55.8; 65.1; 74.4; in kilogram-meters per

second. Thus, the energy increases in proportion to the square

root of the number of passengers; for the last projectile_ this

figure will be 8 times as large as for the first projectile. The

same figures show how many horsepower are required to carry a single

passenger on the airship; namely, for the eighth projectile a 74 HP

machine is required per passenger. Clearly, then, it will be diffi-

cult to construct airships carrying a sizable number of air trav-

elers, whereas the most enormous theoretically conceived aerostat

can carry as many as 600 passengers under far less exacting con-

ditions_ requiring no more than I HP per passenger and moving at a

speed of 62 km/hr. With respect to the ratio of the largest aero-

stat to the aeroplane No. 8, we may state the following: one hundred

times as many passengers and one-hundredth the amount of engine
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energy; one hundred times the possibility of doing the job and one-

hundredth the traveling cost. (Cf. Tsiolkovskiy, "Aerostat metal-

licheskiy, upravlyaemyy, vyp. i i 2 [Dirigible metal aerostat, Nos.

I and 2]).

We shall soon see that our seemingly exorbitant conclusions

are fully confinmed by the data on Maxim's and Lilienthal's experi-

ments.

The absolute power of the eight aerial vehicles will be, re-

spectively (in horsepower): 9.3; 74.4; 251.1; 595.2; 1164.5;

2008.6; 3190.9; and 4761.6; it is obvious that the power of the en-

gines increases faster than the weight of the projectile: it is

proportional to the weight of the projectile multiplied by t1_

square root of the weight. The speeds of the airplanes will be,

respectively: 64, 128, 192, 256, 320, 384, 448, and 512 km/hr;

starting from a rather insignificant value equal to the speed of

larger balloons (aerostats), it attains an astonishing magnitude:

500 versts per hour [533 k_/hr]. But a velocity such as this is

both necessary and advantageous; if we were to think of lowering

it, the engine energy would have to be increased still further, and

the design of the aerial vehicle would be less feasible. Only 1/4

of the total engine power would have to be used, however, to de-

velop this staggering speed; the remaining 3/4 would be expended

strictly on keeping the projectile airborne, i.e., combatting

gravity. The law of velocities is explicit: the speed is propor-

tional to the square root of the weight of the projectile or of the

number of passengers.

The mean wing density D for the different projectiles will

be expressed by the following figures, respectively: 1/400; 4/400;

9Z400; 16/400; 25/400; 36/400; 49/400; 64/400; this means, from
5/400 to I/6 of the density of water*; in the case of the heaviest

of the projectiles enumerated above, it would be 21/2 times less

than the density of dry spruce wood. This illustrates the diffi-

culties of constructing wings of great surface area and low weight.

One square meter of such wings would weigh, on the average, (in

kilograms): 1/2; 2; 41/2; 8; 121/2; 18; 241/2, and 32, respective-

ly, and actually would be even slightly less; note that the wing

must withstand a substantial force of pressure almost equal to half

the weight of the projectile; the center of this pressure coincides

approximately with the geometrical center of the wing. For each

_Because of the convex wing surface, the mean wing density may be

appreciably larger, a comforting fact.
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square meter of wing surface, we find, on the average, a pressure
on the part of the oncoming air 8 times in excess of the weight
values specified.

The gasoline supply would make it possible for the aeroplane
to cruise over a considerable distance without having to replenish
the fuel stores. This cruising range is the samefor all aero-
planes, assuming, as earlier, for aeroplanes one-half as large_
1/2 kg gasoline per horsepower per hr (which is very little),
whereuponwe find the longest trip to be about 700 km; but the time
it takes totravel this distance will be different for the various
projectiles, namely, it will be the reciprocal of their velocities;
so that these times will be, respectively: ll, 51/s, 3_/3, 2a/4,
21/5, hours.

In view of the high engine energy_ it is quite probable that

the utilization of the fuel will be far from the ideal, as we assume

here_ so that both the distance of 700 km and the flight time should

in practice be 2 to 3 times shorter.

We will now confirm our conclusions by Maxim's experiments.

His flying projectile weighed, together with two passengers and

fuel and water stores, 2725 kg; clearly then, its weight lay between

our two projectiles carrying 4 and 9 passengers. The wing surface

of Maxim's vehicle_ as well as its design, came quite close to what

we assumed for our aeroplanes (Fig. 2). The power of its engines

should consequently be somewhere between 74 and 251 I_?. The power

of the engines on Maxim's projectile was, as we know, between 90

and 225 E?. We see now that our conclusions are a bit plausible.

Making more precise calculations on the basis of available formulas

and laws, we find that a projectile similar to Maxim's vehicle,

with a wingspread of 216 square meters, and weighing, like Maxim's

vehicle, 2725 kg, must have an engine of 137 HP. Is this not close

to Maxim's conclusions?: The speed of his projectile reached

150 k_hr, which again is not in contradiction with our calculations

(from 128 to 192 k_hr). Nevertheless, on flying its I00 meters,

it could hardly have achieved such velocities because of the im-

perfections in the design of its wings. As for the future prospects

and significance of the aerial vehicle, Maxim himself acknowledges

that its applicability is limited exclusively to military purposes,

and that it is unsuitable for carrying cargoes and passengers_ i.e.,

the renowned inventor expresses the same thoughts which we voiced

over a year ago concerning aeroplanes ("Aerostat"_ no. 2, 1893,

page 83).

But the energy that Maxim managed to extract from his engines

is remarkable' His engine (together with the power generator, of

course) weighed about 420 kg. Its power ranged from 90 to 225 HP;

thus, the energy E per second per kg of engine weight was somewhere

between 21.4 and 53.5 kg. Applying this energy to our aerial

lli
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vehicles with wingspread of 216 square meters, we find that this is

enough energy to raise aloft a projectile carrying a crew of from 5

to 35 persons.
By the way, we also find confirmation for our conclusions in

the work of still another renowned investigator, Otto Lilienthal,

who only recently suffered so terribly for his devotion to science.

From equation (4), we find

V F.g P
V = P+ •

n _ 4_<7 _>2 S.d _w_7 2a>+ 2 +

Using this formula, we are able to calculate the velocity of

the vertical fall of Lilienthal's parachute. It is known that the

latter dropped through the air, from his vehicle, in an inclined

direction from a hill 80 meters high; the time of the descent was

about 40 seconds; there was a head wind with a velocity of 7 meters

per second, while he flew 320 meters in the horizontal direction.

The translational velocity amounted to about 8 meters/sec, and the

velocity of the fall was about 2 meters/sec.

Therefore, in the preceding formula we put

V : 7 + 8 : 15 meters/sec,
P

i.e., the relative velocity (relative to the air) is made up of the

sum of the velocities of the projectile (relative to the earth) and

of the wind; F or the weight of the vehicle together with the aero-

naut was about 90 kg, as we know; the surface S of the wings was 14

square meters; a/b = l; we then compute V = 3.5 meters, whereas
n

the speed of the fall (in the presence of wind) was about 2 meters/sec.

At first, this contradiction presented me with a dilemma. But it was

readily resolved on attributing it to the ascending current of air

due to the inclination of the hill from which the experimenter
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launched into flight (against the wind).

In fact_ the tangent of the angle of inclination of the hill

to the horizon amounted to at least 1/4, so that the air blowing

l_ainst the hillside acquired an ascending velocity amounting to

4 to _5 the wind velocity; this ascending current was what lifted

the wings_ thereby almost reducing in half the speed of the wings'

descent.
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VI

Some Additional Features of the Design of an

Aeroplane, and its Operation

Were we to judge by the energy of now available engines, we

would have to abandon all dreams of flying by means of bird-like

projectiles (or, rather, insect-like projectiles, since we have

indicated that our aeroplane resembles most closely a coleopterous

insect, as for example a ladybug). I have valid theoretical reasons_

however, for believing in the possibility of constructing extremely

lightweight yet powerful gasoline or petroleum engines fully capable

of meeting the problem of flight. That is why I refuse to draw back

from probing further into this interesting question.

We shall continue to hope that this problem will be favorably

resolved, sooner or later.

In my view, it is not at all out of place to communicate here

some very brief additional information on a flying machine.

Earlier, we provided only a schematic design for the sake of

simplifying the calculations (Chapter Ill, Fig. 2); but how a flying

projectile is to be actually designed_ how it is to be put into mo-

tion, how it can be landed on the ground and is to retain its

equilibrium -- we said nothing about these things earlier. To be

brief, I suggest that, first of all, we make an attentive examina-

tion of the accompanying drawings (Fig. 6 and Fig. 7)-

Fig. 6 gives a lateral view of the projectile; the following

drawing gives the cross section transverse to the hull and the

vertical cross section.

It is clear from these figures that the wings need not have

the form of rectangular plates: they are more similar to bird

wings; except for being motionless relative to the hull (i.e., they

are not flapped in the manner of birds). The form is rounded every-

where; the wing cross sections are bounded in every direction by

smooth lines, so that the wings cut through the air with ease; the

pressure on the entire bottom surface of both wings is fairly uniform.

During flight the front portion of the hull is raised slightly as if

the machine were attempting to climb a mountain; this inclination

aids somewhat the performance of the engines; but owing to considera-

tions of space we shall not go into all these details and many others.

We also see some wheels jutting from underneath the hull. I

shall explain their function at this point.

The projectile climbs into the air only on achieving a certain

translational velocity. How is this velocity to be imparted to it?

The propeller turns rapidly, forming a fairly strong thrust, but the
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projectile will remain motionless if the wheels are braked; gravity

and the friction on the wheels will hold the projectile fast. By

making things a hundred times easier with the use of the wheels and

a smooth horizontal roadbed in the form of a cast iron platform or

rail track, we find that our projectile will roll rapidly on its

wheels, drawn along by the action of its propellers (in the manner

of a steamship); as the speed increases the pressure on the wings

from the oncoming air stream will be increased and, on the other

hand, the pressure of the projectile weight on the launch platform

will decrease, and very soon the instant will come when the pro-

jectile wheels will no longer be in contact with the platform, and

when the flying machine will rise smoothly into the air, under the

powerful action of its engines.

Wing Wing

Hull

Fig. ?

The wheels are also needed in landing the projectile on the

earth. The machine cannot simply set down just any place at hand;

it requires a smooth and fairly extensive platform, the braking

action of which will enable the machine to safely lose its trans-

lational velocity. This reveals certain additional complications

in the use of the aeroplane. It is also possible that the aero-

plane can descend safely onto the level surface of a snow field in

the wintertime_ and onto the smooth surface of the water in a river
or in a lake in the summertime.

Some other birds, the swifts, for example, acquire the ap-

propriate horizontal speed by diving; imitation of this maneuver

would be rather risky for a man-made projectile_ except for the case

of rolling off a launching hill built expressly for the purpose, and

even this does not in any way eliminate the difficulties.

The climb is greatly facilitated when a wind is blowir4_ pro-

vided the projectile is launched into motion against the wind.

Birds sometimes soar to great heights without the slightest effort

by stretching their wings to meet the wind. Later, of course, they
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have to begin flapping their wings in order not to lose the relative

translational velocity of their bodies. In the face of an uneven

air stream, both birds and specially designed aeroplanes could,

theoretically, keep themselves aloft almost exclusively by riding

gusts of wind. Uniform, even if rapid, motion of the atmosphere,

on the other hand, would not reduce the work the engines have to do,

i.e., whether the wind blowing is a head wind or a tail _nd, whether

it is blowing hard or soft, the amount of energy spent per hour by

the engines would not vary in the slightest on that account. It is

merely that a tail wind would accelerate the motion, while a head

wind would slow it down. Moreover, it is doubtful that a gusty wind

(an uneven air stream) could, in practice, appreciably facilitate
the performance of engines on large man-made flying projectiles

capable of carrying passengers. To ride the gusts of _rlnd, birds

must accomplish complex maneuvers, which could hardly be imitated
by the simply designed projectile of ours. And moreover then the

bird becomes a plaything of the wind. It is true that the bird is

capable of rising and falling as it wishes while it hunts its prey,
but it is constrained at the same time to execute circles while

passively abandoning itself to the overall air current.
Lilienthal's experiments reveal that it is by no means so

difficult as it seems to maintain the longitudinal axis of the

flying projectile in a horizontal position. Nevertheless, even

Lilienthal, who has learned to steer his own machine so dexterous-
ly, had to acknowledge that a sudden gust of wind (an accelerated

motion of the air) lifting him several meters unexpectedly during

his descent (for, he was making an oblique landing) was not without

danger to him*. Simple control by a rudder, similar to a bird's

empennage, would therefore not only require experience and continual

alertness, but would not even be sufficiently reliable. An auto-

matic control device would be required. Its operation could not be

based exclusively on the laws of gravity (such as a double-legged

tube with mercury or similar instrument), as the operation of a

horizontal level control which I suggested earlier for a maneuver-

able aerostat ("Aerostat," No. 2, page 47). Actually, when an

aeroplane is tilted, it acquires an accelerated motion in the di-

rection of the tilt (as when rolling downhill), so that the effect

of gravity becomes more complicated and the mercury in the double-

legged tube would not perform its function, i.e., it would retain

its inclined level for some time in unison with the projectile. On

an aerostat, however, a tilt would not produce any accelerated

*It is reported that a famous aeronaut and investigator recently
plummeted during one such flight, breaking his leg.
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motion, so that a controller of this type would work correctly,
actuating an electrical current and re-establishing the equilibrium
of the airship. It seemsto be that an aeroplane would require a
tiny rapidly rotating disk coupled to the axes in such a way that
its plane could consistently retain its position no matter what the
rotation and tilt of the vehicle, as a suitable horizontal level
control. Whenthe disk (gyroscope) is maintained in continual rapid
rotation, its plane will be fixed with respect to the projectile,
but as soon as the projectile changes direction, the relative po-
sition of the rotating disk will also change. Of course, a change
of this type could provide the reason for switching on or off the
electrical current acting on the electromagnet and on the rudder_
which constrain the projectile deviating ever so slightly from its
correct position to resume its horizontal position I_.
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K. E. TSIOLKOVSKIY'S FIRST EXPERIMENTS ON AIR RESISTANCE

(1895-1896) BEFORE THE CONSTRUCTION OF HIS WIND TUNNEL*

I. Fig. 8 shows the apparatus which I employed to investigate

the drag of elongated bodies (of the type of our aerostat) moving at

a velocity of one meter per second.

2. The test objects were bounded by surfaces of revolution

obtained by rotating an arc of a circle about its chord. The diameter

Fig. 8

of the center cross section of all these bodies was about I0 cm._
and the cross-sectional area between 80 and 82 cm 2.

3. The test shape (made of paper) was mounted at one end of

*This article is actually a chapter from Tsiolkovskiy's "A 200-Man

Maneuverable Iron Aerostat as Long as a Large Steamship" which he

had published in Kaluga in 1896. In this chapter, entitled "Experi-

ments and Formulas Used to Calculate the Independent Speed of My

Aerostat," Tsiolkovskiy describes his first experiments in aero-

dynamics, dating from the years 1895-1896. (Editor).
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a steel rod (Fig. 8) and a small plate at the other. The direction

of motion of the apparatus coincided with the direction of the axis

of the elongated test shape and was normal to the direction of the

horizontal rod and the vertical plate. Before the translational mo-

tion began, I made sure that the rod was free of the slightest rota-

tion about the pivot point. In the course of numerous experiments_

the plate was cut away or replaced until the air pressure on it

equalled the longitudinal pressure on the shape. This occurred when
the translational motion no longer caused the rod to rotate (the

centers of pressure were the same distance from the pivot point).

In this case, I shall call the ratio of the area of the plate to the

area of the largest cross section of the test shape the drag coeffi-

cient of the shape.

Below I give the characteristics of the test shapes and the

results of experiments on them:

4. Length of shape ........ 21 32 42 52

5. Surface area of shape.. 440 670 880 1080

6. Area of plate .......... 222 18 19 21

7- Drag coefficient ....... 0.272 0.222 0.235 0.259

62 cm

13oocm2

24 cm2

o2%

The last row of figures was obtained by dividing the area of

equal resistance (6)* by the area of the greatest cross section_

i.e., by 80 or 82 (2).

8. An inspection of the drag coefficients shows that the

least resistance corresponds to a shape, the length of which is al-

most three times greater than its height. Thus, with increase in the

slenderness of the body the drag first falls and then rises again.
This becomes understandable if we assume the existence of friction

between the air and the body.

9. This apparatus not only demonstrated the existence of

friction, but also made it possible to determine the corresponding
coefficient. In this case the elongated shape was removed and

*The figures in parentheses refer to the corresponding paragraph in

the text. (Editor).
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replaced with something like a flag or wind vane, always oriented in
the direction of motion.

lO. In the presence of motion at the rate of one meter per

second, the ratio of the area of the plate of equal resistance to

twice the area of the larger friction surface (both sides were taken

into account) was 1/58.

Ii. Multiplying the surface area (5) of each test object by

the coefficient of friction (_58) and subtracting this value of the

friction from the area of equal resistance (6), we arrive at the

following figures:

]2. 14.41 6.45 3.83 2.21 1.59 cm2.

From these figures we can derive the approximately valid law:

13. The force needed to part the air (not including friction)

is inversely proportional to the square of the aspect ratio of the

body.

14. These further experiments (9) with the apparatus con-

vinced me that the coefficient of friction is inversely proportional

to the velocity of the friction surface, i.e., may be expressed by

1

the formula _V , where V is the velocity of the surface in meters

per second.

15. Knowing the law (13) characterizing the force needed to

part the air or the resistance due to inertia and the law of friction

(14), it is easy, even on a purely empirical basis, to construct a

formula for the total air resistance to bodies of the simple shape

described in (2). Thus, we get:

2g _3 SbKV
8

where K is the ratio of the true resistance of the surface to the

theoretical dnb---_V2; according to the experiments of Cailletet and

2g
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Colardo (which deserve special attention since the motion of the

plate was rectilinear), K = 1.06; a and b are the half-length and

half-height of the aerostat; V is its speed; and g is the accele-

ration of gravity_ the other quantities being obtained from the ex-

periments described.
With this formula I computed the longitudinal pressure on the

aerostat due to the airflow.

16 The term in brackets 18 _b_+
• 23

drag coefficient.

a is the total

_ 85bllV

a

17. For example, putting the aspect ratio equal to 7 (-_ = 7;

this is the value adopted for our proposed aerostat), we find the

following drag coefficients for different velocities:

Velocity

sec

1

2

3

4

5

6

8

io

12

24

Velocity

3.6

7.2

10.8

14.4

18.o

21.6

28.8

36.0

43.2

86.4

Drag
coefficient

1/3.1

1/6.o

1/s 

#1o.9

1/13o

#15.o

1/ 85

1/21.5

1/24.2

1/34.9
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18. Determining in the usual way the aspect ratio of the

aerostat corresponding to minimum drag, we obtain the formula:

19. From this we can compute the most favorable aspect ratio

for different velocities V and the corresponding minimum drag co-
efficients:

Velocity of aerostat.. I 2

Aspect ratio .......... 3.3 4.16

Drag coefficient ...... 0.217 0.135

4 8 i0 12 _sec

5.24 6.6 7. ll 7.56

O.O85 0.054 O.O46 0.041

20. From these formulas we see that, given a minimum drag co-

efficient_ the friction is equal to twice the drag due to the inertia

of the air. Accordingly, the friction of the air plays an even more

important part than its inertia.

21. In the light of these haws, my previous calculations

("Aerostat," No. 2, pp. 73-75) relating to the drag on a slowly

moving aerostat (for example, one driven by man-power) are incorrect.

In regard to the independent motion of an airship traveling

at high speeds (from 20 to 40 versts per hour), I was quite right.

22. In order to determine directly the drag coefficients of

elongated bodies (2) moving at high speeds, I constructed an appa-

ratus (Fig. 9) consisting of two horizontal tubes, mounted on a tri-

pod; these tubes were about 75 em. long and had openings about 25 cm.

wide. In one of these I mounted the test shape on a rod (Figs. 8

and 9), and in the other a plate; the rod_ of course, was introduced

into the tubes through special openings and, as usual, was free to

rotate about a central pivot point. The tubes were taken out on the

roof and set up in the direction of the wind. I stood to one side

and observed the rod in the gap between the tubes to determine on

which half the air pressure was the greater, i.e., which half was
outbalanced.

The test shape I employed was 62 cm. long (4). The wind

speed at the observation point changed quickly and constantly, vary-
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J

Fig. 9

coefficient being 1/13.

ing between 0 and 5 meters per second.

As plates of equal resistance (6), I

used successively copper coins with

2
areas of ll.6, 8, and 6.2 cm , respec-

tively. When the velocity of the wind

was small, the special shape prevailed,
but as soon as the velocity reached

2-3 meters per second, the balance
swung in favor of the plate (area

2
ll.6 cm ; corresponding coefficient

1/7). At a velocity of about 4 meters

per second an area of 8 cm2 was suf-

ficient (corresponding coefficient

_lO). At velocities of more than 5
meters per second the shape was out-

balanced even by the coin with an

area of 6.2 cm2, the corresponding

It is readily seen that all these experiments are in approxi-

mate agreement with our formulas based on other experimental results.

The drag coefficients of elongated bodies moving at slow

speeds are surprisingly high (cf. 7). Thus, for a body with an as-

pect ratio of 5.2 moving at l_sec the drag coefficient is 0.259 or

about _4. However, to some extent we observe the same thing when
elongated bodies move slowly through water. Thus, experiments _-ith
a wooden body having an aspect ratio of 5 and the same shape as that

previously adopted gave a coefficient of about _3; in this experi-
ment the rate of motion was not determined, but was less than 0.5

m/sec.
I have made many other experiments with surfaces of different

shapes. Thus, for a sphere and a cylinder, at a velocity of about

l_sec, I obtained coefficients of 4/9 and 0.6. At high speeds the

drag coefficient of a sphere is close to 0.4.
In time I hope to publish a detailed description of all my ex-

periments on drag which I am ready to repeat in public.
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K. E. TSIOLKOVSKIY'S FIRST DESCRIPTION OF HIS WIND

TUNNEL SUBMITTED TO THE RUSSIAN PHYSICOCHEMICAL

SOCIETY IN PETERSBURG ON 12 OCTOBER 1897"

First of all, I must humbly beg the much-esteemed members of

the reviewing committee not to communicate to anyone anything con-

cerning my work and plans, before they have been brought to com-

pletion and published.

All the drawings submitted are rough and schematic, because

they are not yet ready for publication.

I enclose a photograph of the apparatus used for my early

experiments. HP is a vaned blower (a sort of winnowing machine).

A similar device which I have constructed is 150 cm tall and 40 cm

wide. The stream of air, which gradually expands and weakens,

emerges at P and initially, at the mouth of the blower, is about 40

cm square. P denotes a series of horizontal baffles intended to

regulate the flow, which otherwise would not be perfectly uniform

below the opening. H denotes the shaft of the stand and the bearings

(not shown) together with the surrounding clamp (a sort of Proni

clamp). This clamp has a handle (black circle), by means of which

the vanes J1 are made to rotate. The clamp is fitted with two nuts

and bolts. Depending on how tightly we screw these up, we can vary

the friction between the iron shaft and the two wooden blocks of the

clamp. By turning the vanes faster and faster, we eventually arrive

at a moment when the clamp slides over the shaft and the velocity of

the air flow becomes maximal and constant. In all the experiments

the air pressure on the test model is determined at this maximum

velocity, which corresponds to the degree of clamping and depends on

the experimenter. In each individual experiment the velocity is

found from the pressure exerted on a plate using the coefficients

of Cailletet and Colardo (or Langley), assuming that the barometric

pressure and the temperature of the air are known.

is a rectangular tin vessel containing water, in which

floats a second smaller vessel. The test model, the pressure on

*Letter from Ko E. Tsiolkovskiy addressed Kaluga, 5 October 1897 to

A. L. Gershun. (At that time Professor Gershun was a member of the

Presidium of the Russian Physicochemical Society which met at Peters-

burg University.) The letter is preserved in the Moscow Division of

the Archives of the Academy of Sciences, No. 555.
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[Legend for figure]

General view of the house and floor plan of

the Speranskaya's House in Kaluga on Street

of the Year 1905 (formerly Georgiyevskaya

Street). In this house Tsiolkovskiy per-

formed his experiments with the wind tunnel

he had invented (1896-1903).

1 - porch, 2 - veranda, 3 - hall, 4 - passage,

5 - kitchen, 6 - wind tunnel, 7 - living room,

where the experiments were performed, 8 - bed-

room.

which we propose to determine, is fastened to the latter by means of

4 vertical rods or in some other manner. To the same platform as

that on which the vessel filled with water is placed there is at-

tached a stand, from which a long, thin iron wire is freely sus-

pended. At the top the wire is fastened to a thread on which the

floating model pulls, tending to drag it in the direction of the
air flow. This causes the wire to deflect from the vertical. In

the experiments, the deflection is determined as the tangent of the

angle of inclination by means of a scale divided in millimeters.

The intensity of the air pressure will be proportional to the number

of scale divisions indicated by the wire. By means of a previous

calibration experiment I determined how many milligrams corresponded

to a deflection of the wire through i mm. Thus, the deflections and

the corresponding air pressures can all be expressed in milligrams.

The inner vessel is equipped with two light arms which make

its motion almost exactly parallel to the direction of the air flow

(Fig. 2). During the experiment the outer vessel is covered with a

lid, in which narrow slots are formed for the free passage of the

rods supporting the test model.

I made the models very light, out of paper. When it became

necessary to build a model in the form of a surface of revolution,

I first carefully traced the curve of the principal longitudinal

section of the model. Following this curve, I turned half the model

in wood on a lathe, up to the principal cross section (Fig. 3).

(Actually, this was done for me at the local railway school.)

Around the wooden half-model I stuck strips of wet paper and

wrapped (bandaged) the whole thing tightly with broad tape (swaddling

it like a baby). I then allowed the paper to dry out thoroughly,

stripped off the tape and carefully removed the paper, which retained
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[Key for Fig. i]

I - ...drawings are rough and schematic,

since they are not yet ready for publi-
cation; 2 - outlet; 3 - flow axis; 4 -

air flow; 5 - vane; 6 - air blower; 7 -
HP - vaned air blower (a sort of winnow-

ing machine). This device which I have

constructed, is 150 cm tall and 40 cm
wide. The stream of alr ....

\

the convex shape of the wooden form. After that, it only remained

to glue the pieces of paper together. After the paper shell had

been removed, the broader opening was fitted with a paper hoop

(Fig. 3). If the shape was very elongated, several such hoops were

glued inside the shell. The other half of the model was prepared

in the same way, though sometimes it was not the same shape as the

first. When the two halves had been glued together, the model was

complete.

Fig. 2

1 - Cover; 2 - Water;

3 - Model and inner
vessel.
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Fig.

Turning to the experiments, It was first necessary to confirm

that the floating vessel and the model attached to it were suffi-

ciently mobile. Accordingly, I placed the system of vessels on the

table and observed what pressure had to be exerted on the model in

order to obtain an appreciable displacement. For this purpose I

constructed a device capable of exerting very small pressures on

the model. It consists of a rod A (Fig. 4), mounted in a more or

less vertical position, and a thin wire bent at right angles and ro-

tating about A.

Fig. 4
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The lighter the wire B, the more perpendicular the axis of A,
and the less B is deflected from the equilibrium position, the
smaller the force exerted by B on any obstacle it encounters. With
the aid of this device it is easy to exert a pressure of a few milli-
grams. The model begins to moveappreciably even under a pressure of
1 milligram. And since the air pressure in the experiments reaches
5 grams and more_ the sensitivity of my apparatus would appear to be
perfectly satisfactory.

Fig. 5

It is also important to investigate the artificial air flow
(Fig. 1). It is necessary to know the velocity of the flow at
different distances from the mouth of the blower and from its central
horizontal axis. Fig. 5 shows a device for finding the velocity of
the air flow directly. It consists of a plate A mounted on two
spring legs; the deflection of this plate from the equilibrium posi-
tion depends on the velocity of the flow.

Oscillation of the plgte indicates a nonuniform, gusty flow.
I obtained the scale B as follows. First, I computedthe pressure
on the plate A (from the Cailletet and Colardo coefficient) for dif-
ferent flow velocities; then I exerted these samepressures on the
plate A by meansof a pulley and weights, marking off the readings of
the pointer along the arc BA and engraving the corresponding values
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of the velocity.
Alternatively, we can use an apparatus similar to but smaller

than that shown in Fig. 2. The place of the test model is taken by

a vertical plate (Fig. 6).

Fig. 6

The flow of air exerts pressure on B, forcing it to move and

deflect the spring A by an amount proportional to the air pressure.
The scale shows neither the exact velocity nor the pressure, but

only their constancy or nonuniformity in different parts of the flow.

Fig. 7

Thanks to the water, the readings of this instrument are less
sensitive to vibrations.
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The experiment is set up as shown in Fig. 1. The model is

mounted in the middle of the flow, facing in the same direction and

not too close to the mouth of the blower, so that the difference in

velocity at the ends of the model is not too great. The dimensions

of the model, particularly in the vertical direction, should be small

compared with the width or cross-sectional area of the flow. In the

tests the ratio of the maximum cross-sectional area of the model

80 sq. cm) to the cross-sectional area of the flow did not exceed

20. However, it is desirable to have a much smaller value.

Theoretically the flow should be infinite. Nevertheless, I shall

have occasion to show (by various methods) how little the drag co-

efficients are affected when an infinite flow is replaced with a

finite one.

Fig. 8

The experiment begins with the bolts H relatively slack (Fig.

1), which corresponds to a low degree of friction on the shaft and

a low flow velocity. All the models are tested with the nuts in the

same position, at the same velocity of the artificial flow. When

the pressure on the last model has been determined and recorded, it

is replaced with a plate of known area mounted normal to the flow.

From the pressure on the plate, in conjunction with the readings of

the barometer and temperature, we determine the velocity of the
flow. The centers of the models and the plate must lie at the same

point in the flow. The pressure on the plate is best determined at

the beginning and end of a series of experiments, in order to

verify that the velocity of the air has not changed in the course

of the experiment. Each of the figures obtained is converted into

the drag coefficient of the corresponding model, when we compare, by

division, the pressure on the model with the pressure on an area

equal to its greatest cross section (this is computed beforehand;

the pressure obtained for the plate enables us to determine the

pressure on any area at the same flow velocity).
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Upon tightening the clamp H by several turns of the nuts and

thus increasing the velocity of the artificial air flow, we accurate-

ly obtain a series of different pressures, from which we derive a

series of other coefficients for the same models at a different

speed_ calculated_ as mentioned above_ from the Cailletet and Colardo

coefficients.

Fig. 9

On performing a further series of experiments with the same

models, after further increasing the friction and hence the flow

velocity_ we obtain a third group of pressures and coefficients.

Thus, by observing, say, a score of models at ten different speeds,

we obtain 200 figures expressing the pressures on different models

at different speeds. It then remains to express graphically, or by

means of empirical equations, the relation between the pressure and

the flow velocity_ and sometimes between the pressure, the flow

velocity_ and the variable shape of the body. At any rate, apart
from the derivation of certain laws of resistance_ the drag coeffi-

cients I have obtained for various bodies have definite value as

factual or verificational material.

I propose to carry out experiments with the following models

at different speeds:

I. With bodies of different aspect ratio, obtained by

revolving an arc of a circle about its chord.

This group of observations will also include a spherical

surface and its parts.
So far I have conducted experiments with surfaces of this

kind only at a speed of 1 meter per second and in the wind. Experi-

ments of the latter type are inconvenient and difficult, not to men-

tion their inaccuracy (I shall send the committee a published descrip-
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tion of these experiments).

2. It would also be interesting to determine the pressure

on the same models with the longitudinal axis inclined to the di-

rection of the flow, but for this an extremely large blower would be

required.

3. With an ellipsoid of revolution of different degrees

of elongation (Fig. 7).

'{c

Fig. 12

4. With pancake-shaped, fish-shaped and egg-shaped bodies

(in the article the shape will be given in the form of a drawing or

equation).

5- With various kinds of cylindrical and conical surfaces

(Fig. 8).

6. With polyhedra.

7. Certain writers on air resistance (Pomortsev) neglect

the influence of the tail end of the model and the air friction

(even with elongated bodies). I shall conduct experiments to clarify
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this disputed point.

8. With a square plate normal to the direction of flow

but at different distances from a horizontal plane (platform) (Fig.
lO).

9. With the same plate but mountedat an angle to the di-

rection of flow. In this case, the vessel with the water and the

plate must be arranged so that the direction of the plate coincides

with the direction of the flow; this happens when the indicator
(dynamometer, Fig. l) reads zero. Then, in relation to a circle

previously traced on the platform, the vessel and the plate are ro-

tated successively through 5, 10_ 15_ 20, etc. degrees. (Verifica-

tion of the formulas of Duchmin, Langley, and Lord Rayleigh.)

lO. Experiment with an elongated rectangular plate mounted
in the direction of the flow and slightly inclined to it. The

elongation or aspect ratio of the plate is varied. Derivation of a

law expressing the influence of the aspect ratio and area.

ll. Experiment with the same plate but with the long

edge normal to the flow. Derivation of same law.

12. The pressure on one body and a series of identical

bodies arranged one behind the other in the direction of the flow

(Fig. ll).

Application to the problem: which cuts through the air more

easily -- a single airship or several airships linked together in a
chain?

Note that experiments on relatively blunt bodies can be con-

ducted at the same or at two different velocities, since the drag

coefficients of such bodies are almost independent of the flow ve-

locity, provided it is not less than 1.2 meters per second.
In order to demonstrate the experiment to a considerable

number of persons it can be set up in the following form (Fig. 12):

A is a test model, the low resistance of which we wish to demonstrate

graphically to the public; B is the vessel filled with water previous-

ly described (Fig. 2); D is the fulcrum of the lever arm BC; C is a

plate, the air pressure on which tends to outbalance the model A.

If, for example, we take a plate, the area of which is _lO

of the cross-sectional area of the model, and bring into action the
blower (Fig. l) with the clamp tightly screwed down, we see that as

the velocity of the air flow gradually increases there arrives a

moment of equilibrium,after which the balance shifts in favor of the

plate. From this we may conclude that the drag coefficient decreases
with increase in the flow velocity, and at the moment of equilibrium
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Figs. i0# Ii

[English translation of the above points

6-10 given in present chapter. ]
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may be expressed by the fraction i/I0. I have already performed a

preliminary experiment of this type.

Kaluga, 12 October 1897

Georgiyevskaya ul. _ dom Speranskoy
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AIR PRESSURE ON A SURFACE SUSPENDED IN AN

ARTIFICIAL AIR FLOW*

Notes for Reading in Conjunction with the Article

The speed of rotation of the blower blades is proportional to

the square root of the weight of the load (5 and 6) _.

Deflection of the needle by I mm corresponds to 1/80 g (about

12 dynes). The resistance of the body is expressed as mm of deflec-

tion, i.e., as eightieths of a gram (24).

The reading of the needle was verified with a weight before

the start of each experiment (23 and 24).

The resistance measurements were made at air densities close

to 0.0012 of the density of water.

The resistance of the stands, supports, and strips was con-

stantly checked; in most cases they were as follows:

Load 1/2 I 2 4 8 16 pounds

Resistance 3 6 II.5 21.5 42 82 mm

The resistances quoted in the paper are after subtraction of

the resistance of stands and so forth.

The resistance of a plate set normal to the air flow is pro-

portional to the flow (26, 27, and 28).

The force on I cm 2 for various loads was as follows:

Load 1/2 i 2 4 8 16 pounds

Force 0.325 0.65 1.3 2.6 5.2 10.4 mm

_irst printed in the journal Vestnik opytnoy fiziki i elementarnoy

matematiki (Herald of Experimental Physics and Elementary Mathe-

matics) in 1899.

*_'_he numbers in parentheses refer to the corresponding paragraphs

in the text. (Editor.)
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The force on 80 cm2 = 26, 52, 104, 208, 416, 832 mm (see 38).

The air flow speed is proportional to the square root of the
load (29).

The ratio of velocities for the various loads is given by (30):

I 1.4 2 2.8 4 5-7

The absolute speeds (m/sec) for the same loads were (35):

I/2 I 2 4 8 16 pounds

0.756 1.069 1.512 2.138 3.024 4.276 m/sec

The projection of a body is here defined as the area of the

shadow of the body on a plane perpendicular to the air flow direction

on the assumption that parallel light rays run parallel to the wind

direction. In short, this is the area of the projection of the body

on a plane normal to the air flow (102).
The resistance of the projection is the force from the wind

pressure on a plate perpendicular to the flow and having the area of

the projection.

The resistance coefficient is a term I use frequently; it is
the ratio of the resistance of the body to the resistance of the

projection for the same wind speed. It indicates the resistance of

the body as a fraction of the resistance of the projection for the

same wind speed (the projection is sometimes the area of the largest

cross section of the body). The shape utilization or shape utility

(shape factor) is the reciprocal of this ratio, namely the ratio of

the resistance of the projection to the resistance of the body at
the same wind speed. It indicates by how much the resistance of the

body is reduced by virtue of its shape relative to the resistance of

the projection for the same wind speed. The shape factor is usually
larger than one and the resistance coefficient less than unity, but
the reverse can occur.

The law of relativity of motion makes it a matter of indif-

ference whether the body moves in still air or the air moves against

the fixed body. The resistances must be strictly equal in the two

cases, if the conditions of motion are identical.

The coefficient of friction between a plane and the air is
the ratio of the absolute force of friction on one side of the fric-

tional surface to the resistance of the same surface when moving in
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air with the samespeed along the normal to itself.
The aspect ratio is the ratio of the length of the body to the

meandiameter of its largest cross-section (or to the width).
Longitudinal curved surfaces I constructed very simply from

paper. Shapestaking the form of surfaces of rotation I madeby
first carefully drawi_ the principal curve of the longitudinal cross-
section. I then turned half of the shape (up to the largest cross-
section) from wood on a lathe, according to this curve. This half
former I covered with strips of wetted paper and bound them tightly
into place with broad tape (swaddled, as a baby). The paper was
allowed to dry thoroughly; then the tape was unwoundand the paper was
carefully removed, this having very closely the convex form of the
surface of the woodenformer. It remained merely to glue the pieces
of paper on the shape. After this paper shell had been removed, the
wide end was covered with a paper support (of rice paper). The other
half of the shape, which was sometimes unequal to or different from
the first, was madein the sameway. The two halves were lightly
glued if necessary.

The blower consisted of a woodenbox bolted together. The
walls were lined on the inside with cardboard, while th_ curved sur-
face was madeof tin-plate. The axle and bearings of the fan were
of metal, while the vanes were of thin cardboard. I did not weigh
the blower, but I think that it weighed not more than 50 pounds.

Most of the shapes for resistance test I glued together from
rice paper.

DESCRIPTIONOFAPPARATUSANDCONDUCT OF EXPERIMENTS [12]

1. The artificial air flow was produced by means of an appa-

ratus resembling a winnowing machine (Fig. 1).

2. B is the blower, whose height was about 150 cm and width

45 cm. The vanes b were driven by loads varying from _2 to 16 lb.
The diameter of the fan (12 vanes) was lO0 cm. The load acted as

follows: a cord was wound on the shaft S by means of a handle (not
shown) and passed through a fixed pulley screwed to the frame; its
other end was attached to a hook also attached to the frame next to

this pulley. The moving pulley carried the load via two hooks.

There was also an additional load (_2 lb, not more) intended to
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counteract friction (which it overcame at small loads) and so caused

the rotation to correspond more closely to the principal load (see

below).

__°L%h R - Sh _ axis of flow air flow

. it

......... ...........

Fig. i

3. To the load L there was attached also a cord in constant

contact with the floor, to ensure that the weight of the cord acting

on the apparatus was constant.

4. The cord could make up to 18 turns around the shaft,

while the time of observation of the air flow and of the forces it

produced was not less than ii sec (for a load of 16 Ib).

5. The additional load ensured that the time for the cord to

unwind completely was strictly inversely proportional to the square

root of the weight of the load. For instance_ the time of unwinding

for a load of 1/2 ib was 62 sec_ which, relative to the least time

(see 4) was increased by a factor 62/11 = 5.64_ whereas the law of

inverse proportion to the square root of the weight gives
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#(,6/#,)=JT =5.66.

6. We may conclude that the speed of the air flow is propor=

tional to the square root of the principal load.

7. The maximal speed can be deduced from the diameter of the
fan. A load of 16 lb caused the outside of the fan to travel in ll

sec a distance lO0 X 3.1416 X 18 = 5655 cm,

: which in 1 sec is 515 cm or 5.15 m.

___ 8. The wind speed in these tests was

|_t:"__ therefore close to 5.15 m/sec.

Fig. 2 9. This speed was somewhat reduced by

the action of the lattice that renders the flow

uniform (L in Fig. i) and by imperfection in

the equipment. This lattice is a box open on two opposite sides di-

vided up by ll thin strips into 12 equal sections, which in turn are

divided into 48 equal apertures by 3 vertical strips. The lattice

suppresses eddies and equalizes the speed (makes the wind less

gusty).

I0. The area of the lattice is only slightly less than that

of the blower outlet: height and width about 35 cm_ length in flow

direction 25 cm.

Ii. The shape Sh to be tested is set up on rods attached to

an open tin box_ which floats in another container C filled with water.

12. This C is closed with a sectional lid having slots to al-

low the 4 rods carrying the shape Sh to move freely.

13. Between the rods (Fig. 2) along the flow there are at-

tached two parallel tin strips; between these are two horizontal

light circles on the lid_ which turn freely on vertical needles.

These circles have a diameter very slightly less than the distance

between the tin strips; their function is to ensure that the rods move

freely without rubbing on the sides of the slots. If the shape moves,

one of the strips bears lightly on the circles and rolls almost with-

out friction.

14. The length, width, and height of the outer container (cm)

were 30, 15, and 4; those of the inner_ 20, I0_ and 2.5.
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15. The floating box could carry (including its own weight)

up to 500 g (i.e., over a pound).

16. The sensitivity_ even when loaded with the heaviest

shape_ was more than adequate; a horizontal force of I mg (about 1
dyne) was sufficient to move the floating box. It was necessary

merely to add sufficient water and to remove air bubbles adhering to
the bottom of the floating box.

17. For the latter purpose it was necessary to press the box

down to the bottom and rotate it slightly. However, this does not

eliminate the bubbles permanently, for they continue to be produced
on account of warming-up of the water and other reasons, which causes
them to coat the walls of the vessels. These bubbles reduce the

mobility of the box, so they had to be removed from time to time, as
stated.

18. Container C was set horizontally on the tripod head T to

bring the shape Sh to the center of the flow and to make the direc-
tion of motion of the inner box coincident with that of the air flow.

19. Under the tripod head T there was a horizontal ruler

graduated in mm pointing along the flow direction.

20. In the same vertical plane as this fixed ruler there

hung a light lever or needle N_ whose axis was horizontal and fixed.
All these were attached to T.

21. A very light and freely moving rod R joined needle N to

the rods in the floating box. The wind tends to move the shape to-

gether with the needle when the blower is working; it is deflected
to the right from the vertical and shows the force exerted by the

air flow on the shape and rods.

22. The reading deviates more widely from proportionality

to the force the larger the deflection.

23. This was readily demonstrated by deflecting the needle

with a weight instead of by air pressure. For this purpose a very

light pulley made of paper was used to bring the gravitational force

on the weight to the horizontal. One end of a thread was attached

to the rods_ the thread running over the pulley and carrying a paper

pan at its far end. This pan was loaded with weights from a deci-

gram upwards. The deflection of the needle was at first almost pro-

portional to the load, but the larger deflections were less than

this would imply.
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24. I bent the needle as shown in Fig. i to give almost strict

proportionality in the readings. The apparatus was such that a de-

flection of N by I mm corresponded to 1/80 gram (about 12 dynes).

25. The pressure force on the rods, strips, needle N, and so

on, expressed in,m, was as follows for six different loads:

1/2 I 2 4 8 16 pounds

3 6 Ii. 5 21.5 42 82 mm

26. These resistances had always to be subtracted from the

resistances of the shapes.

27. The speed of the flow was determined by fixing normal

to the flow on two diagonally placed rods a pair of almost square

plates of total area 14 cm 2. The forces on these, as corrected for

the resistance of the rods (25) for the same loads, were

4.5 9 18 36.5 73 145 mm

28. From this we see that the force on the plate is propor-

tional to the load, which is expected.

29. But the force on a plate is proportional to the square

of the flow speed, or the flow speed is proportional to the square

root of the force, so the speed is proportional to the square root

of the load.

30. Then the ratios of flow speeds for the various loads are

as follows

so the highest speed (load 16 lb) was 5.66 times the least (load 1/2

lb).
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31. The pressure on a plate normal to the flow is not de-

pendent on the density of the air for a given load, as theory and ex-

periment show; a fall in air density causes an increase in flow

speed, so any fall in pressure is nullified.

32. The series of 27 therefore remains the same no matter what

the barometer reading.

33. But the absolute speed alters, and hence so does the re-

sistance of slim bodies, for which air friction plays a large part.

34. The force of (24) on a plate readily gives the flow speed;

for this we use Cailletet and Colardo's formula O.OyIV 2, which gives

in kg the wind force on a plate 1 m 2 in area from a wind speed V in

m/sec. It is assumed that the atmospheric pressure is I kg/cm 2 and

the temperature is lO°C, or that the density of air is constant at

0.00]2 of that of water.

35. This formula gives the following speeds:

0.756 1.069 i. 512 2. 138 3.024 4.276 m/sec.

These speeds are only 1/5 less than the speed at the outside

of the fan in the blower (7)-

36. The present air flow had a restricted cross-sectional area

(about 1200 cm2), which was larger than that in Maxim's apparatus*.

The wider the flow in relation to the model, the closer the force
should be to the theoretical value.

37. However, tests with plates of area up to 80 cm 2 or even

2
100 cm showed no appreciable deviation. On this basis we can assume

*Hiram Maxim.

1896, Boston.

Natural and artificial flight. The Aeronautical Annual_
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that the air flow is quite adequate (acts as unbounded) for shapes

2
whose cross-sectional area does not exceed 80 cm .

38. In view of the fact that I frequently used such areas,

I give the force on a plate of area 80 cm 2 for the various flow

2
speeds (see 35). The force on I cm was 0.325, 0.65, 1.3, 2.6, 5.2,
and 10.4 _.

II

FORCE ON A FLAT PLATE NORMAL TO THE FLOW

39. The flow speeds quoted in (35) are based on the experi-

ments of Cailletet and Colardo, because they determined the pressure

on a plate in rectilinear motion, whereas others have measured the

pressure during motion in a circle (on rotating machines), in which

the circular pressure is the larger the less the radius of the circle.

40. The following values (in kg of pressure from a wind moving

2
at i _sec per m of plate normal to the flow, subject to condition

34) show the great variation in the values for the relative resistance

obtained by various workers:

41.

42.

43.

44.

45.

Goupil and Marey: 0.130.

International wind-speed scale: 0.123.

Piobert, Morin_ Renard, and Langley: about 0.085.

Cailletet and Colardo: 0.071.

Poncelet derived from theory the expression d_2g, in

which d is the weight of unit volume of air and g is the acceleration

due to gravity. This gives for the metric atmosphere (735.5 mm) and

10°C only 0.0612.

46. Cailletet and Colardo's value (0.072) agrees most closely
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with this; it is only 1/16 larger than this theoretical value.

47. It was inconvenient to determine the flow speed directly

on my apparatus, but it was easy to measure the force on a plate,

from which I deduced the speed in accordance with Cailletet and

Colardo's results. The probability of the results is thus strength-

ened by (35)-

III

FORCE 0NAN INCLINED PLATE

48. The forces on plates placed at various angles to the air

flow have also been measured or deduced theoretically by various

workers, but here there is no less disagreement (41, 44, 45).

49. Let P1 denote the wind pressure on a plate normal to the

flow and let P be the pressure on the same plate placed at an angle

to the flow; then we have:

P = sin2i. The gross incorrectness
50. From Newton's laws, _-

1

of this is now quite clear from theory and experiment.

P

51. Leslie gives _l = sin i*.

52. Lord Rayleigh's formula is**

*All recent workers on resistance agree that the pressure at acute

angles is proportional to the sine of the angle of inclination.

Duchmin's experiments (Recherches experimentales sur les lois de

la resistance des fluides (Experimental Investigations of the

Laws of Resistance of Fluids), Paris, 1842) and (the late) Lilien-

thal's (Der Vogelflug als Grundlage der Fliege-Kunst (Bird Flight

as the Basis of the Art of Flying), Berlin, 1880) lead to the same

conclusion.

**Lord Rayleigh. On the resistance of fluids. Phil. Mag., _, 1876.
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P (4 + sin i

4 + w sin I

53. Langley's experlments*with rotating machines give

P 2 sin i

_l= 1 + sin2 i

54.

2
I00 cm .

I made experiments with an inclined square plate of area

First I determined a series of horizontal forces with succes-

sive turns of the plate through 5° about a horizontal axis. The

initial position was with the plate normal to the flow; the measure-

ments extended up to an angle of inclination of 45°.

55. Then the position of stand (Fig. I) and box was altered
to perpendicular; the plate lay along the air flow and was rotated

about a vertical axis. The zero position was taken as that in which

the flow exerted no force on the plate and did not deflect the needle

of the dynamometer (Fig. 1).

56. Combining the series of 54 and 55 into one, and eliminating

the effects of the rods in 55, reading the angles from the direction
of the flow 3 and converting the measured forces to ones normal to the

surface of the plate, we get (for a flow speed close to 1.5 m/sec,
produced by a load of 2 lb) the following results:

*Langley. Experiment in Aerodynamics. 1891.
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Angle 0° 5° lO° 15° 2O ° 25 ° 3O °

Force 0 18 37 56 81 105 123

Angle 40° 45° 50° 55° 60 ° 65 °

Force 140 143 I/_/_ 145.5 142 139

Angle 70° 75° 8o ° 85° 9o°

Force 136 134 133 132 132

35°

135

57. These forces normal to the plate have been derived from

those recorded in the tests of (54) by division by the cosine of the

angle between the plate and the flow direction (the angle in the

table) and from those recorded in the tests of (55) by division by the

sine of the angle 13.

58. The table shows that the force is almost exactly propor-

tional to the angle for angles of 0 to 15°; then there is a somewhat

more rapid rise up to 20° , and then a slower one to a maximum at an

angle of 500 to the flow.

59- In this position the force normal to the plate is 12 mm

larger than that when the angle between plate and flow is 90°. In

general, this is so for angles between 35 and 85 °.

60. None of the formulas of 50-53 predicts this feature; they

all merely show that the force is at first proportional to the sine

of the angle of deviation from the flow direction_ then rises less

rapidly, but always continuously, to 90 °.

P

61. The following are the _l given for various angles by the

formulas of 51_ 52_ and 53, and by my experiments.

62. The table shows that my results for small angles are

somewhat less than those given by Langley and Rayleigh; subsequently

they are closest to Langley's results and differ most widely from
Leslie's.

63. Tests with different loads and plates of identical in-

clination showed that the force is proportional to the load or to the
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square of the flow speed.

Leslie

Rayleigh

La_ ley

My results

o

0.087

0. 145

0. 166

0.137

20 °

0.342

0.470

0.612

0.614

35°

O. 574

O.708

0.864

1.023

50 °

o.766

o.819

o.984

1.091

60 °

0.866

O. 920

O. 990

1.o76

90 °

i

i

i

I

IV

FORCE ON AN OBLONG INCLINED FLAT PLATE

64. None of the fonmulas given above indicates the effect of

the length of the plate on the force.

In fact, the force is scarcely dependent on the length as such

if the plate is perpendicular to the flow; it is dependent solely on

the area; but the length has a marked effect on the force if the plate

is inclined*.

*Amans. Sur un appa@eil destin@ & mesurer la force propulsive de

diverses palettes (An Apparatus Designed to Measure the Propulsive

Force of Different Bladings). L'Aeronaute_ 1890.

This paper states that length in an inclined plate placed perpendicu-

lar to the flow increases the force exerted by the wind; but formulas

are not given. Langley's experiments point to the same conclusion.
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67. I did a series of measurements with rectangular plates 4

cm wide and of lengths 4, 8, 12, 16, 20, 24, and 32 am; these were

placed along the flow and across it at the same acute angle of 20 °.

68. I give only the results for a wind speed of about 3 _sec;
here also the effect of 63 was observed.

With the transverse position (long edge of rectangle perpendic-
ular to flow direction) i found:

Length 4 8 12 16 20 24 cm

Force 22 43 64 90 llO 136 mm

This shows that the force is almost proportional to the area

for the transverse position.

69. However, with an acute angle to the wind there is a

clear increase in the force per unit area. For an angle of 12° and

a speed of 3 _sec we have

Length 4 8 12 16 20 24 am

Force 6 14.5 25 38 47.5 59.5 mm

The forces on 16 cm2 are then respectively 6, 7.3, 8.3, 9.5,

and 9.9, so the pressure increases continuously, in this case by a
factor rather less than 2.

70. The force is also not proportional to the plate area when

the plate is placed longitudinally, even at 20 °. The test for a speed

of 3 _sec gave

Length 4 8 L_ 16 20 24 32 cm

Force 22 33 42 53 62 73 85 _m
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The force increases by only 50% when the length of the plate

is doubled.

71. These three tables give the force in the flow direction;
the forces perpendicular to the plates may be found by dividing

these forces by the sine of the angle of inclination of the plate to

the wind.

V

TESTS ON FRICTION

72. To elucidate the laws governing the friction of air with
the surfaces of solids I used three circular cylindrical surfaces

all of diameter 10.3 cm and circumference 32.5 cm but of different

lengths (12.5, 25, and 50 cm).

73. These were placed along the flow direction (generator

parallel to that direction) by raising or lowering an end or by ro-
tatlng the cylinder to give the minimum resistance as read from the

needle of the dynamometer (1, c) for a given wind.

The cylinders were, of course, open (had no bases) to allow

the air to pass freely through.

74. To simplify the deductions, all measurements were made
at air densities close to 0.0012 of the density of water (see 34).

75. Tests were done with the cylinders with loads of _2 to

16 lb; correcting for the resistance of the rods, we have

Area Length 1/2 I

813 12.5 4 7

1625 25 6 ll

3250 50 9 16

2 4 8 16

12 21.5 36 60

12
r.

19 32.5 56 94

29 50 87 160
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The surface areas of the cylinders have been doubled because

the friction was developed on the outer and inner surfaces. The

resistance is expressed in millimeters (i mm corresponds to 1/80 g).

76. The results reveal the following fairly clear-cut laws

of friction.

77. The friction is not proportional to the square of the

speed; a doubling of the speed causes only a threefold (average

3.04-fold) increase in friction, or an increase in speed by 1.41

times caused an average increase in resistance of 1.7434 times. The

deviations were slight and occurred in either direction.

78. The friction is not porportional to the leD_th; on

average, doubling of the length caused an increase in friction by a

factor 1.546.

79. The frictional force T for cylinders of this diameter

(about lO cm) is given by

T = A. vat b,

in which v is wind speed in m/sec, _ is the length of the cylinder,

and the other quantities are constants.

80.
ab ab

For a particular case we have T I = Av _I and T2 = Av _2'
so:

81. _i = - , or b = log 2 : log .

83. But we have seen that when the ratio of lengths is

2 = 2) the ratio of the forces is I°5_ <_i = 1.5_6_, so b =

= log (1.546) : log (2) = 0.629, or about 0.63.
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84. Then from b we can find a. For a given length of cylinder

we have

a b
= t3 T4 : A'v3

85. Then we have

= and a = log : log v3

86. But we have seen that a doubling of the speed(_ = 2)

increases the friction by nearly a factor 3 _-_ 3.04)_ so a

= log (3.04) : log (2) = 1.604.

87. This then gives us A. From (79) we have

T T

vat b v 1-604. t0.63

Insertion of any set of values for v_ 4, and T from the table

of (75) then gives us A. For example, we take from the table of (75)

the friction value 32.5 (mean about 32.3), which corresponds to a

speed of 2.138 _sec and a length of 50 cm. Then A as found from

the above formula is: A = 1.264.

88. The experimental results of (75) are then represented

by the empirical formula
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T = 1.264 •V1"604 • t0"63.

89. We apply this equation to the deduction of a general
formula for the frictional force on a rectangle of length L meters

and of width 1 m moving along the direction of side L with a Speed V

_sec.

Considering the friction on one side only, we have

1.264 x lO0 •V1"604" (L" lO0)0"63.

32.5 x 2 x 80 X 1000

This formula is derived from the preceding one by converting

cm to m and my mm (arbitrary unit of resistance equal to _80 g) to

kg. Here the frictional force is in kg and the length L of the rec-
tangle in m. Then we have

T = 0.0004_23 •V 1"604 L0"63

90. The coefficient of friction (ratio of the frictional
force to the air resistance for movement of the same plate at the

same speed but in the direction normal to itself) is given by
Cailletet and Colardo's formula (34)

F = (1 X L) • 0.071"_.

91. Dividing the previous formula by this, we have

T -0.396
-- = 0.00623 •V
F

-0.37
" n
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The coefficient of friction thus decreases as the speed and

length L in the flow direction increase; moreover, the power (about

14
0.4) is nearly the same for both .

92. The last formula gives us the inverse relation

F +0.396 +0.37

T = 160.5 V L ,

which indicates by how much the frictional force on a rectangular

plate is less than the resistance of the same plate in normal motion

at the same speed.

93. The following table is based on formula 92, which is

simplified for use by reduction to

F = 160.5. V0"4 L0"37
T

The laws of (77) and (78) have not been verified by experiment
for very long surfaces or high speeds, so the values in table (93) may

be considered undoubtedly correct only up to lengths of 50 cm and

speeds up to 5 _sec; formula (93) is correct within the same limits.
I very much regret that I could not carry out more extended tests

with longer surfaces or speeds above 5 _sec. Analogy with Frood's
experiments for water (see: Dislere, Expose sommaire des exp@riences
faites _Amsterdam sur la resistance des carenes (A Brief Report on

Experiments on the Resistance of Keels, Performed in Amsterdam),
Paris, 1878) would indicate that the indices in (93) gradually de-
crease as L and V increase.

The coefficients of friction are found from the values in the

table by taking the reciprocals.

94. For example, the coefficient of friction is _655 for a

surface l0 m long moving at a speed of 4 m/sec.
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The table shows that the friction of bodies of moderate length

in the flow direction can be neglected if their dimensions in this di-

rection are more than 0.I m.

However, the friction in my models, which were not very long

in the flow direction, may also be neglected, for it was not more than

1/20 of the resistance from inertia.

Previously (Vestnik opytnoy fiziki, No. 259) I gave the formula

T I

for the coefficient of friction on the assumption that the surface is

reasonably extensive in the flow direction (Vestnik opytnoy fiziki,

No. 258, p. 1463 footnote). Now we can determine the extent to which

we must increase the surface, together with the speed, in order to

obey Hagen's law (see previous formula) and so to make true the de-

ductions made in my paper "Independent motion of an aerostat" (Vest-

nik opytnoy fiziki, Nos. 258 and 259).

95- We put

58V = 160- V0"4- L0.37

(from the previous formula and 93). Then

L = • V = 0.0646 "V m.

Hagen's law will be obeyed if the length of the rectangle in

1.62
the flow direction increases as V

Then for the velocities in question (Vestnik opytnoy fiziki,

No. 258, p. 150) we have the following lengths:

V = i 4 12 20 40 _sec.

L = 0.065 0.610 2773 8285 25.44m.
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This shows that even very high speeds (e.g., _O _sec or 144

k_hr) do not require very long surfaces (ones ten times less than
those of my proposed s2rostats). This means that the friction is even

less than that implied by my previous work.

96. For instance, in example 74 (Vestnik opytnoy fiziki No.

259) the limiting speed of the s2rostat was 328 _sec, so the coeffi-

cient of friction was 1/19,024 from the previous work, whereas from
(91) of the present paper it is 1/32,800. The friction in these new

tests is thus only two-thlrds in relation to my cost extended calcu-

lation, so the speed of the aerostat would be higher than that previ-

ously calculated.
This means that the favorable nature of my deductions on the

aerostat is not altered; only the accuracy is affected, and that

not very much.

VI

REGUIAR PRISMS AND CIRCULAR CYLINDER

lO0. These were placed with their axes perpendicular to the
flow direction. The axes were about lO cm long.

101. Triangular prism, side of triangle 4 cm. The force on

any body of small extent in the flow direction is found to be di-

rectly proportional to the load or to the square of the wind speed,
so the forces on such bodies will be given for one load only (al-

though I did tests with various loads).

102. Load 2 lb; one face of prism parallel to flow direction

(wing). The wind force corresponded to 44 ram. The force on a plate
normal to the flow and having the projection of the prism* is calcu-

lated as 45 ram, so the resistance coefficient is only very slightly

less than unity.

*By this is meant the projection on a plane normal to the flow.

(Editor).
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103. Oneface perpendicular to the flow and facing it. Force
58 mm; force on plate 53 mm.

104. The same, but edge facing the wind. Force on prism 31.5
mm, force on projection 53 mm. The resistance is then substantially
less than that of a plate (by a factor of 1.7) and the resistance
coefficient is 0.59 (almost as for a cylinder).

105. Square prism. Side of base 4 cm; face normal to wind;
force on prism 54 mm,on projection calculated as 53 mm. The pres-
sure therefore scarcely differs from that on a plate equal to the
face.

106. The sameprism, but placed with edge faclngwind (sym-
metrically). Force on prism 58 mm, on projection 74mm. Resistance
coefficient 0.78, but it is actually better to have the face normal
to the wind, because the absolute resistance is less.

107. Hexagonal prism. Side of base 3 cm. Placed with
corner leading (minimumprojection), giving a minimumforce on pro-
Jection of 69 mm; force on prism 61 mm. Resistance reduced relative
to a plate by only a factor 1.13; resistance coefficient 0.89.

108. Maximumprojection (two faces normal to wind). Force
on projection 78 mm, on prism 52 mm. Resistance coefficient 0.65
(close to that for a cylinder).

109. Ratio of largest resistance (2 faces parallel to wind)
to least (2 faces perpendicular to wind) is 1.2, which is not large.

llO. Regular octagonal prism. Minimumprojection: resls-
tance reduced in ratio 65:53 = 1.23; maximumprojection: reduced in
ratio 69:42.5 = 1.62. Resistance coefficients respectively 0.82 and
0.61. Ratio of largest resistance to least 53:42.5 = 1.24.

iii. Right circular cylinder. Length of axis i0 am (as for
prism); base diameter 5 am. Resistance strictly proportional to
square of speed (41 mmfor load of 2 ib; resistance of projection
65 mm3resistance reduced by a factor 1.59, resistance coefficient
0.63). It seamsodd that the resistance of a cylinder is somewhat
higher than that of an octagonal prism of the sameprojection. It
would seemthat the leading edge, which divides the air, mayplay
somepart.

112. Formulas (50)-(53) have been used by somescientists to
determine the forces on polyhedral and other bodies. For instance,
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Leslie's formula (51), which gives forces about half the true ones,

gives 0.785 for the resistance coefficient of a cylinder, which is

grossly different from the experimental value. On the other hand,

the more correct formula (53) gives an even larger error, while

Newton's invalid formula gives less error. This shows that the

formulas of (50)-(53) cannot be used to calculate the forces on curved

or polyhedral surfaces.

113. We have shown by experiment that these formulas are not

even suitable for flat plates_ if these are elongated and lie at

acute angles to the flow (see 64-70).

VII

RIGHT ELLIPTIC CYLINDERS

114. I used four elliptic cylinders, with the major axis at

various angles to the flow direction. The following results were

obtained with a load of 2 Ib:

Maj or

7O

68

65

62

Axis

Minor

56 mm

49

31.4

Axial

ratio

1.26

1.39

1.51

Inclination of major axis to flow

0 ° 30 °

45

33.5 43

28 37

17.5 34

60 °

56.5

55

54

55

90 °

6O

62

62

65
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The length (height) of each cylinder was I0 cm.

115. The principal positions (0 and 90 °) are used in the

calculations. A cylinder having its major axis along the wind may

be considered as one of aspect ratio greater than one; one with its

minor axis so_ less than one. A circular cylinder has an aspect

ratio of unity. Then, including the circular cylinder of (III), we

have 9 measurements on elliptic cylinders of various fineness ratios.

116. From the table of 114 we have

1.98 1.51 1.39 1.25 1.00 0.80 0.72 0.66 0.51

2.34 2.00 1.9 1.83 1.59 1.52 1.42 1.37 1.25

The first line is the aspect ratio (ratio of length of axis along

flow direction to length of axis perpendicular to flow); the second

is the reduction factor relative to the resistance of the projection

(shape factor).

117. Then I used a cylinder whose base took the form of a

fish; the front part had the shape of an ellipse, and the rear ended

in an acute angle. This shape was very smooth. The base had a length

of 18 cm and a greatest width of 5.8 cm, so the aspect ratio was 3.1.

118. Loads of 2_ 4, and 8 Ib were used, with the cylinder

having on one occasion its elliptic end towards the wind and on the

other its acute-angled end. The following resistances (mm) were

recorded:

Blunt end toward wind

Sharp end toward wind

2

24

26.5

42

52

8 161b

75 135

104 mm -



134

These show that the resistance when the wind strikes the rounded

end is much less than when it strikes the sharp one. Moreover, the

resistance in the first case does not increase as rapidly as the load
(or as the square of the speed), whereas in the second case it is pro-

portional to the load. The least resistance coefficient for a cylinder

with its circular end facing the wind is 0.224; the largest, 0.316.

The corresponding values for the sharp end facing the wind are both

0.342. The resistance is reduced (the shape factors are) 4.47, 3.14,

and 2.92.

VIII

REGUIARPOLYKEDRAANDSPHE_ES

I19. Tetrahedron (regular figure with four faces). Length of

edge lO cm, resistance proportional to load, so only the resistance
for a load of 2 lb is given.

120. One face parallel to flow, one edge symmetrically placed

with respect to air; resistance 31 mm. Edge symmetrically placed

with respect to air and normal to the flow: resistance 43 mm. One

face normal to flow and apex facing flow: resistance 25 mm, resis-
tance coefficient 0.4b_. Face perpendicular to wind and facing it:

resistance 61 mm, resistance coefficient 1.08. The rear pyramid

merely increases the resistance. The minimum resistance coefficient

differs only slightly from that of a sphere.

121. 0ctahedron (regular elght-faced figure). Length of

edge 6 cm; axis passing through vertices normal to flow.

a) Four-faced corner facing into flow: resistance 30.5

mm, resistance of projection 47, resistance coefficient 0.65;

b) Edge normal to flow and facing into wind: resistance

25 mm (less than the previous by a factor 1.22), resistance coeffi-
cient 0.61.

122. Cube; length of edge 8 am.

a) One face normal to flow: resistance 64mm, resistance

of projection 84m m, resistance coefficient 0.76 (resistance of cube
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less by a factor 1.3 than the resistance of a plate perpendicular to

the flow and having the dimensions of the projection of the cube).

Dubois and Duchmin give the same ratio for water as varying between
1.22 and 1.27.

b) Two faces parallel to flow, others identically in-

clined to flow; one edge faces into flow. Resistance 84mm_ relative
to resistance on projection 0.71.

123. Regular icosahedron (polyhedron bounded by 20 equilateral

triangles). Length of edge slightly over 6 cm. Axis through opposed
vertices normal to wind. Rotation about this axis has little effect

on the resistance (variation from 69 to 71 mm). Area of projection

less than 100 cm2, force on it 130 mm. Resistance coefficient not

less than 59:130 = 0.53.

124. Sphere. Area of great circle 63 cm2; force on projection

82 mm; resistance of sphere (same load, 2 lb) 35 mm, resistance co-
efficient 0.43.

]95. Pomortsev has used formula (53), the most nearly correct

one, and finds the resistance coefficient for a sphere as 0.86. This

is yet another proof of how incorrect it is to use the formulas for
plane surfaces to determine the resistance of curved ones.

I did my tests with the sphere (as usual) at all available

flow speeds and found that the resistance was proportional to the

square of the speed, as for all bodies of small fineness ratio. I

found almost exactly the same coefficients previously for sphere and

cylinder by the use of unbounded air flows (see Tsiolkovskiy_ "A ma-

neuverable iron aerostat," Vestnik opytnoy Fiziki [i elementarnoy
matematiki], No. 259, p. 278).

This agreement indicates that my flow was wide enough for the
models used.

IX

ELONGATED BODIES OF ROTATION

126. Consider a body or surface generated by rotating a circle

about a chord. I made paper surfaces of this type of four lengths:
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21, 32, 42, and 62 cm. The diameter (Fig. 2) of the largest cross-

2
section was close to I0 cm, and the area to 80 cm .

The resistance with the long axis (axis of rotation) along

the flow was as follows:

Load i/2 1 2 4 8 16 it

21 6 12 24 47 79 Ii0

32 5 lO 17 31 48.5 80

42 4 8 16 e8.5 48.5 89

62 4 8 16 55 io431

These shapes were tested at various speeds. The first column

is the length in cm. The resistance decreases only very slightly as

the length increases; it even increases with the length for speeds of

2.14 _sec (4 Ib load) and above. The shape with the least resistance

at this speed is the one with a length of 42 cm. A load of 16 Ib

(speed 4.28 _sec) gives least resistance for a length of 32 cm. This

effect is at first sight surprising; it in part arises from the in-

_reased surface area (and hence increased friction) of long bodies.

128. 0nly at speeds up to 2 m/sec (not more) was the resistance

proportional to the load (or square of the speed); above this it rises

much more slowly, which is especially clear for bodies of small aspect

ratio, for which the friction is small relative to the inertia, on

account of the small surface. For this reason, the effect is not

completely explicable in terms of friction, which is not proportional

to the square of the speed (88). The effect is surprising and at-

tracted my attention particularly, because it points to aspects that

would facilitate flight.

l
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Thus, the law that the resistance of a body is proportional

to the square of its speed has been repeatedly demonstrated from

theory (when friction is neglected) and has been confirmed by experi-

ment (at least for short bodies) -- and now it turns out that,

roughly speaking, this law does not hold even for a small body for

which friction may be disregarded. In fact, the table of 126 shows

that a length of 21 cm (and width of I0 cm) gives an increase in

resistance by only a factor a little over 2, not by the factor 4

expected from that commonly accepted law, when the load increases

from 4 to 16 Ib (speed increases by a factor 2)'

This at first sight strange result may perhaps be explained

as follows.

The same table shows that the law is followed the more closely

the lower the speed; gross deviations OCCUr only for speeds between

2 and 4 m/sec.

It may be that the motion extends far around the body when

the speed is low, the work of perturbation of the air being compara-

tively large. Higher speeds do not cause the perturbation to spread

so far; the air is merely compressed near the front half of the body

and returns some of its work of compression when it expands and

exerts a pressure on the rear part. It seems to me that part of the

work originally lost by the body thereby returns to it, and that this

part is the larger the more rapid the motion.

Fig. 3

This return does not occur for longer bodies, for at the

largest speed I used (4.3 _sec) the lateral displacement of the air

occurred extremely slowly, the perturbation propagated far, the air



was condensed (compressed) little, and so there was scarcely any re-

turn of the work expended. However, at sufficiently high speeds
even very long bodies should undoubtedly show this return and hence
should show a favorable deviation from the law of increase of re-

sistance in proportion to the square of the speed (of body or medium,
both being the same).

This means that my previously assumed (Vestnik opytnoy fiziki

No. 259) resistance of air as dependent on inertia must be subtantial-

ly reduced, On account of the excellent elasticity of air. The re-
duction is the larger the greater the speed of the aerostat. Who

knows what speeds air vessels may attain in the future as a result

of the principle of return of energy: In any case, they will be

greater than those I gave in the above paper.
If we calculate the friction for all the bodies in Table 126

(for which purpose special coefficients applicable to the curvature

of the body have to be determined) and subtract this from the total

resistance, we obtain a table giving the resistance dependent on
the inertia and elasticity of the air alone.

Taking a series of bodies for the same speed, we find that

the inertial resistance is approximately inversely proportional to

the square of the aspect ratio.
This is the case for low speeds (up to 2 _sec); but we can

see that it does not apply for the inertial resistance at 4.2 _sec.

We must consider how to explain this strange feature (see Vestnik

opytnoy fiziki No. 259, P. 277).
The fact is that at small speeds there is no compression of

the air and associated return of energy; at higher speeds we find

lateral compression for blunt shapes but not for sharp-edged ones
that move the air aside slowly; so for the latter the inertial re-

sistance is much larger than the aspect ratio law would imply.

129. The relative fall in resistance dependent on the

elasticity of the medium is not so prominent for elongated bodies,

because friction plays a large part for these; in contrast, the

inertia (lateral displacement of the air) is slight, on account of

the sharp-edged form. But for large bodies and for speeds at which

the friction is not large (91), the favorable reduction of the

inertial resistance should be perfectly clear.

130. The following table shows by how much the resistance

of the shapes of (126) is reduced relative to the force on the area

of largest cross-section (on the projection). These numbers may be

called the shape factors; they are the reciprocals of the resistance
coefficients. In addition, the speeds are given, while the lengths

of the bodies are replaced by the aspect ratio (ratio of length to

width).
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131. This shows that the least resistance in my experiments

occurred with the body of aspect ratio 3.1 at the highest speed.

Pomortsev found by means of variational calculus for the same aspect

ratio in a body of ideal shape (least resistance) that the resistance

coefficient should be 0.4, which would imply a shape factor of 2.5,

which is less than the value found in my tests by a factor 4.

132. I stress this point in order to show once again how

inapplicable the reasonably reliable resistance formulas for plates

(52 and 53) are in the determination of resistance for curvilinear

bodies.

X

COMPARISON OF RESISTANCE FOR BODIES OF DIFFERENT

SHAPES HAVING ROUCKLY THE SAME LENGTH

AND ASPECT RATIO

133. The table below gives the resistances of a) one of the

bodies of (126) of length 21 cm, b) an ellipsoid of rotation, c) a

body smooth in the longitudinal direction but of square cross-

section (built up from four equal plates bounded by arcs of circles),

and d) a body composed of two equal conical surfaces (Fig. 4).

Fig. 4

134. Comparison of body a with the ellipsoid of rotation shows

that the latter has only slightly less resistance than body a, which

had small cones at the ends; in fact, the elli_soid even had a larger
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resistance at or about a speed of 4_sec and above. This means that

it is doubly favorable to use a shape ending in cones for a metal

aerostat (as regards construction and as regards resistance).

135. Resistance of body c (square cross-section) also did not

differ greatly from that of bodies a and b, which shows that the
corners on the cross-section have little effect on the resistance.

136. But corners on the longitudinal cross-section (except at

the ends) have a very undesirable effect on the resistance, as is

clear from body d_ whose resistance is 2-3 times greater and which

increases in almost strict proportion to the load or to the square

• of the speed (so the work of inertia is here much greater than the

work of friction).

XI

SIGNIFICANCE OF RESISTANCE OF THE REAR

137. Some derby that the rear part of the body is significant

in relation to the resistance to the wind. But the contribution

from the rear is very great for long and smooth bodies. The follow-

ing results illustrate the importance of the rear part for various

bodies.

138. I used_ among others_ elongated bodies _ivided by a

central cross-section into two equal parts. For instance_ I used

half an ellipsoid of rotation and half a body obtained by rotating

a part of a circle around its chord. I placed the bodies in the

usual way along the flow, but alternately with the blunt and sharp

ends facing into the wind (Figs. 3 and 4).

II
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140. Comparison of the results in the second line with the

resistance of a complete ellipsoid given in (133) shows that the rear

part reduces the resistance of an ellipsoid by only about 1/3.

141. The third line in (139) shows that the force is less on

a flat plate.

142. Comparison of the forces given in the third line with

those for the complete bodies in (126) shows that the rear part here
halves the resistance.

143. Finally, comparison of the results in the fourth line

with the forces on a flat plate having the area of the central

cross-section for the complete body shows that a rear part of that

extension reduces the resistance of the plate. From all this we see

that we should not neglect the rear part.

I also report here some tests which, although of interest in

themselves, also point to the importance of the rear part. I took

half an ellipsoid of rotation (Figs. 3 and 4) and half a body (length

42 cm) obtained by rotation of an arc of a circle, i.e., the halves

used in the tests of (139). These halves I joined by their planar

(and equal) edges to give a body somewhat resembling Krebs and

Renard's aerostat (Fig. 5), from which it differs only in having

half the aspect ratio.

144. The following table gives the resistances of this body

with its two ends turned to the wind.

Load

Blunt end to wind

Sharp end to wind

1/2

3.5

6

7

12

2 4

14 25

24 46

8 16

45 85

84 134

145 . The most obvious point is that the resistance when the

rear is sharp-ended is almost half of that when it is blunt-ended.
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146. Comparison of line 2 with the resistance of the complete

ellipsoid (139, line 2) shows that the rear halves the resistance at

low speeds and that the value of the rear increases with the speed.

Fig. 5

147. The body of (143) had a length of 32 cm; comparison with

a body of the same length and aspect ratio (Table 126) shows that the

resistance of the composite body is somewhat less than that of the

simple one of (126); but the resistance of the more symmetrical body

(with conical ends) becomes less considerable even at speeds of 3-4

_sec.

148. I deduce that it is best to make an aerostat symmetrical,

with the largest cross-section in the middle.

XII

RESISTANCES OF HALF CYLINDER, HEMISPHERE,

CONICAL SURFACE, AND SCHWARTZ AEROSTAT

149. The resistance of these bodies is almost exactly propor-

tional to the load (or square of the speed), so I give only the re-

sistance for the speed produced by a load of 2 lb.

150. The resistance of a half cylinder was 23 mmwhen the

axis was normal to the flow and the convex surface faced the wind.

The force on the projection was 34mm (area of projection 32 x 8),

so the resistance coefficient is 0.67.



151. The resistance was 43 mm with the cylinder facing the

other way (nearly twice as great); the force on the projection was

34 mm, which is less than for the half-cylinder, so the resistance

coefficient was 1.26. The resistance of the complete cylinder with

the ends open (clear tube) was somewhat larger than that with the

ends closed; the same applied to the half-cylinder.

152. The resistance of an open cone with its point facing the

wind was 55 ram, or 51 mm with the base closed with a circle. The

height of this cone, as also that of the double one used in (133)j

was lO cm, the cross-sectional area being 80 cm2. Comparison with

the resistance of the double cone of 133 shows that the latter, in

spite of the rear part, gave a resistance somewhat higher than that
of an open conical surface.

153. The same conical surface, but with the base facing the

wind 3 gave a resistance of ]28 mm with the base open and 108 mm with

it closed. The force on the projection was 104 mm, i.e., somewhat
less.

154. The following table gives results for short open cones;

the first line is the height in mm, the diameter of the base in each

case being slightly over 7 cm.

Height, mm

Base to wind

Point to wind

0 Ii 16

60 63 64

60 5o

20 23 26

65 66 67

31

68

39

35

68

37

155. I examined whether the resistance of a set of cones is

proportional to the number of them if they are placed along the flow.
I made 5 equal (double) cones and mounted them in different numbers

on a wire with their vertices in contact, which gave the following
results:
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No. of cones 1

Resistance 4

2

8.5

3

11.5

4

16

5

19

The resistance is thus almost proportional to the number of

cones, which shows that a train of aerostats would scarcely move with

a speed greater than that of each aerostat separately. In this case
the load was 4 lb. The length of a double cone was 14 cm, and the

base diameter was 3 _3 cm.

156. The resistance of a hemispherical surface with its con-

vex side facing the wind was 31mm, or 32 mmwhen the rear was closed

with a circle. With the base facing the wind the results were 99 mm

(open) and 94mm (closed), so the resistance is increased by a factor

3.2 when a hemisphere is turned to make its base face the wind.

Comparison of the least resistance with that of a sphere of the same

diameter from (124) shows that the resistance of an open hemisphere

is less by a factor 1.13.

Fig. 6

157. The resistance _as 20 mmwhen the hemisphere had its

base parallel to the wind, no matter whether the base was closed or
not. This resistance is more than half of the resistance of a

complete sphere of the same diameter.



158. Schwarz's aluminum aerostat (Figs. 6 and 7) was tested

near Berlin in 1897; the front end had the form of a hemisphere and

the rear end that of a circular cone of height I0 m. The rear cone

was joined to the front end by a cylinder 12 m in diameter and 24 m

long. To determine the resistance of such a body I made a model of

2
it having an area of the circular cross-section of 63 cm .

Fig. 7

159. The results were as follows:

Load, Ib 2 4 8

Sphere facing wind 26 50 98

Cone facing wind 28 54 107

I



The resistance is thus almost proportional to the square of

the speed.

Further, we see that the resistance with the sphere at the

front was slightly less than that with the cone at the front. The

force on the projection (load 8 ib) was 328 mm, which means that the

resistance coefficient under the most favorable conditions was

98:328 = 0.30, the shape factor thus being 3.34, which is a little

more than for a spherical surface and much below the values for

elongated bodies of simple shape (Table 130).

160. To conclude I give results obtained with a surface made

by joining a sphere to a cone tangential to it.

The length of the generator of the cone was 12 cm; the area of

a great circle of the sphere was 63 cm2 (diameter about 8.9 cm).

Loads of 2_ 4, and 8 ib were used, the height of the cone being

parallel to the flow. The results were as follows:

Load_ ib

Sphere facing wind

Cone facing wind

2

28

28

4

51

55

8

9o

112

The resistance is thus less when the sphere faces the wind for

speeds above I m/sec. The largest shape factor was 3.65 and the least

2.93. The least resistance coefficient was 0.27, as against 0.43 for

a sphere. The cone at the rear therefore reduces the resistance of

the sphere considerably.

CONCLUSIONS

161. Langley's formula gives the best results for the force

on an inclined square plate; Lord Rayleigh's formula is also applicable_
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but none of the formulas predicts the observed increase in the normal

pressure at medium inclinations of the plate to the wind.

162. Both of the above formulas can be used to solve problems

relating to the aeroplane (by which is meant a flying machine re-

sembling a bird or insect).

163. The resistance of a body not elongated along the flow

direction (or rounded) is proportional to the square of the flow

speed. The same may be said for somewhat elongated bodies if rough
corners occur in the middle (double cone).

164. There is no formula that gives the wind force on an

inclined and elongated plate; the greater the elongation and the in-

clination to the wind, the less suitable the known formulas for the

resistance of a plate. The force on a long plate lying along the

flow is considerably less than that they predict, while it is larger

than they predict when the plate lies across the flow.

165. The absolute frictional force (in kg) on one side of a

rectangle of width h and length L when the motion lies along L and

has a speed V is T = O.O004423hvl'6L 0"63 and so is not proportional

to the square of the speed or to the length L of the rectangle.

166. The frictional force per unit area of a rectangle is

1.6
V

TI = 0.00041__3 LO.3 7

167. The frictional coefficient is

0.00623

vO. .#37'

and hence decreases almost equally (index 0.4) with increase in speed
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and in length of surface along the flow direction (L and V are in m
and _sec respectively).

168. In order to render the laws of friction given in my

recent paper (Vestnik opytnoy fiziki No. 259) fully correct, the

length of the frictional surface along the flow direction must satisfy

L = 0.0646V 1"62 (must increase with the speed). The friction in re-

lation to the dimensions of my aerostats is incomparably less than

that I assumed in my paper. For instance, for an aerostat 200 m long
and moving at 12 m/sec the friction is 4 times less than that I pre-

viously assumed (Tsiolkovskiy, "A maneuverable iron aerostat").

169. The greater the surface area, the less the elongation,

and the more rapid the motion, the more we may reasonably neglect the
frictional force relative to the resistance from inertia; but for

maneuverable aerostats the frictional force cannot be neglected.

170. None of the formulas for the resistance of a plate can
be used for the analytic determination of the resistance of a curved

or polyhedral surface, for the results of such calculations are in

gross conflict with experiment. Any agreement is purely accidental.

For instance, the incorrect formula given by Newton actually gives

results closer to the true ones than does the correct formula given
by Langley.

171. I am ready to repeat any of the experiments described
in this paper for anyone who desires this.

172. The apparatus I have constructed is so cheap, convenient,
and simple as to be able to solve rapidly problems insoluble from

theory, and it should be considered a necessary requirement for any
university or physical laboratory.

Many experiments I have not described here have been done in

2-3 min with this apparatus.

173. The resistance of a smooth elongated body (one re-

semblim_ a ship) does not increase as rapidly as the square of the
speed.

174. The air resistance is made up of two components: air
friction and air inertia. Subtraction of the first shows that the

inertial resistance also increases less rapidly than as the square of

the speed, as is readily seen for bodies of small elongation; this is

explained by the elasticity of the air, which is rapidly compressed
along the sides at the nose part of the body and which also expands

rapidly to press on the rear part and thus to accelerate it (or to
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return part of the work done by the body).

175. The inertial resistance is inversely proportional to

the square of the aspect ratio (ratio of length to width) for low

speeds and slightly elongated bodies or for high speeds and highly

elongated ones.

176. If the speed increases in proportion to the elongation,

the lateral compression of the air will be roughly constant_ and

hence two laws governing the inertial resistance will be obeyed

approximately: the inertial resistance is a) proportional to the

square of the speed and b) inversely proportional to the square of

the aspect ratio.

177. The contribution from the rear sometimes increases the

resistance and sometimes leaves it unaffected, but mostly reduces it.

The rear part is of great importance for bodies having the

shape of ships or for maneuverable aerostats.

178. To conclude, I must express my regret that my experi-

ments are not so accurate, extensive, and numerous as to allow the

deduction of empirical fonmulas for the resistance of elongated

bodies. I have already pointed out the limited value of the fric-

tion fonmulas given here.

How important it is to formulate the laws of friction and

resistance as accurately as possible! What vast use they have in

the theory of the aerostat and aeroplane! In fact, there is no branch

of science or technology in which the laws of resistance for an

elastic medium are not important. This is why we ardently wish these

laws to be established and to facilitate, so far as we are able 3 the

experiments needed for this purpose.
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K. E. TSIOLKOVSKIY'SREPORTTOTHERUSSIANACADEMYOFSCIENCES
ONHIS EXPERIMENTSONTHERESISTANCEOFAIR PERFORMEDUNDER

THEAUSPICESOFTHEACADEMYIN 1900-1901"

I have already been engagedin experiments on the resistance of
air for 15 years or more. Nine years ago I applied to the Academyof
Sciences with a broad program of new experiments on the resistance of
air and a request for material aid in carrying out these experiments.

The Academy, in the person of M. A. Rykachev, received my
proposals very sympathetically and decided to grant mefinancial
assistance in pursuing my program of research.

In 19011 sent the Academya report on the first part of this
program.

Academician M. A. Rykachevscrutinized my work very closely
and in the margins pencilled numerous, mostly pertinent notes_ which
I gratefully utilized in correcting my report. Moreover, the esteemed
Academician expressed somegeneral commentson my work, which were
later printed in one of the Academy's publications. These general
commentsand certain notes in the margins of my manuscript revealed
to me that M. A. Rykachevhad formed an exaggerated opinion of the
inaccuracy of certain of my experiments.

My report did not mention the humidity, time, temperature and
barometric pressure corresponding to the experiments.

Academician Rykachev said that, in fact, my experiments could
be independent of density of the air, only if it were assumed that,

other things being equal_ the resistance of the air is proportional

to the square of the flow velocity.

The majority of my experiments were performed precisely when the

wind pressure could be assumed proportional to the square of its velo-

city. Thus, the greater part of my experiments did not depend on the

temperature and the atmospheric pressure, and hence measurements of

this kind would have been quite superfluous.

But, says Mr. Rykachev, in certain experiments the author

*Foreward to "Report to the Academy of Sciences on Experiments on the

Resistance of Air," written by K. E. Tsiolkovskiy on sending this

manuscript to N. Ye. Zhukovskiy_ 21 March 1908. Published for the

first time, in slightly abridged form.
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(that is, I) assumes that the coefficients depend on the flow velocity,

this velocity depends on the density of the air, hence during the

experiments it is necessary to determine the temperature and the
atmospheric pressure.

Qualitatively speaking, the Academician is quite right, but
quantitatively he is not.

In fact, the second group of experiments relates not to the

velocity cited (1, 2, 3, 4 meters per second), corresponding to an

air density 0.0012 times the density of water, but to another velocity
corresponding to the various temperatures and pressures of the air

during the different experiments.

If the density of the air differed much from0.0012, I did not

perform any experiments at all; I admit, however, that I did depart
from this rule to carry out experiments at an air density of 0.0011.

Just how should the corresponding flow velocity vary in these circum-

stances? It is easy to compute that when the air density decreases by

1/12 the original value, the flow velocity must increase by 1/2_ of

the original velocity. However, as I have remarked, the coefficients,

though they do not depend on the velocity, do so only very slightly
(in most of my experiments this dependence was not observable at all,

although, theoretically, it must exist). And therefore, if we

assume that the variation in the air density is a small quantity of

the first order, the relative variation in flow velocity will be

twice as small, and the variation in the drag coefficient will be a

small quantity of the second order. When the resistance is proportional

to the square of the velocity, the drag coefficient is expressed by
a straight line parallel to the x-axis. Otherwise it is expressed by

a curve slightly inclined to the x-axis.

The error, pointed out by the Academician, exists, but it is
so insignificant that it is completely swallowed up in a variety of

other, equally unavoidable errors.

I only regret that, owing to the misestimation by the esteemed

Academician, this theoretical error prevented me from publishing my
work promptly in the transactions of the Academy. Of course,

Mr. Ryakachev did not bring this about intentionally, and I remain very

grateful to him and to the Academy for proffering me their material
and moral support.

A very brief report on the first haLf of my work, without any

drawings or description of the apparatus, was published in "Nauchnoye

0bozreniye",.

* Reproduced in this edition (see following article) - Ed.
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But this was only a summary.

K. Tsiolkovskiy

1. The resistance of the air to the passage of various bodies

can be demonstrated in various ways.

It is possible to drive a body through stationary air and de-

termine the resistance of the counterflow. If the test bodies are

not elongated in shape, it is possible to utilize circular motion

(as in the majority of such experiments), otherwise rectilinear

motion is unavoidable. Thus, rectilinear motion is required to de-

termine the drag of long, hull-like forms.

This rectilinear motion may be vertical or horizontal. In

either case large enclosed spaces are needed; systematic experiments

employing this method, though very necessary, are extremely expensive.

In studies of the resistance of air it is customary to use

circular motion; rectilinear motion is very rarely employed. Thus,

Cailletet and Colardo used it to determine the pressure on a flat

plate dropped from the Eiffel Tower.

It is simpler to expose a body to the wind and determine its

resistance; but, in the first place, the wind is very irregular,

both in direction and in velocity, and therefore requires special

apparatus, and, in the second place, its velocity is not easy to de-

termine.

However_ all these methods, being irreplaceable under certain

conditions, may be regarded as invaluable tools of science*.

2. In my latest experiments (1900-1901) I used a large bladed

blower, rather like a winnowing machine.

I had already used a similar, but smaller machine in 1897-1898.

I have since quadrupled the cross-sectional area of the flow.

My previous experiments weredescribed in "Vestnik opytnoy

fiziki," No. 269-272 , 1898, and in a separate publication. Since the

published drawings of the wind machine were grossly distorted, I now

reproduce an accurate drawing of the blower I used in my experiments

of 1897-1898 (Fig. i).

*Both methods are used in the Ryabushinskiy Aerodynamics Institute.
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The two rectangles represent the cross-sectional area of the

air flow. It is clear that the second machine is somewhat taller than

the first, while the flow cross section is almost 4 times greater. I

achieved this by rapidly widening the air channel around the bladed

wheel.

The wheel is the same size in each machine: i meter in diameter.

In the first blower, however, the circular lateral openings are small

compared with the wheel, whereas in the second they are exactly the
same size.

I recall that the old machine gave more constant readings than

the new one, but in the latter the flow is much more uniform, that is

to say that at a specific point in the flow the wind pressure was

more constant in the old machine than in the new one, but in the

latter this pressure is approximately the same in all parts of the flow.

The rather considerable oscillations of the indicator register-

ing the wind pressure in the latest machine obliged me to devise a

special measuring instrument capable of damping these oscillations.

3. The drawing shows a bladed wheel with 16 linen blades. At

the periphery these are attached to two parallel and identical rims,

and at the center to springs soldered to the axle. Accordingly, my

blades are not spokes, although they are always moderately taut. There

are simply cross braces at each circular opening to support the two
wire rims. The axle of the wheel is made of iron and revolves on

cones seated in conical recesses in the ends of the axle.

4. The side walls of the wind machine are made of wood and

consist of two identical and parall_l rectangles with circular open-

ings. Between these walls a long piece of sheet metal, one arshine

(71.12 cm) wide, is bent into an Archimedean spiral.

Thus, the interior of the wind machine forms a right cylinder,

the base of which is bounded by Archimedean spirals.

When the blades revolve, the air is sucked into the circular

openings, moves along the spiral, and is forced in a straight line

through the rectangular mouth of the channel. The size and shape of

this opening are indicated on the right of Fig. 2. The emerging flow

of air has a slight upward tendency and, moreover, is considerably

weaker at the bottom of the opening.

5- In order to overcome these shortcomings, I fitted the
mouth of the machine with four almost horizontal linen baffles.

These baffles, if sufficiently taut, can easily be inclined to the

horizontal and clamped in this position. I also gave them an in-

clination relative to each other, until I obtained a flow of uniform

intensity from each opening 15. As a result of the almost complete



horizontality of the baffles, the flow, too, was horizontal.
The five openings and the baffles are indicated by dotted

lines in Fig. 2. I have also showntheir inclination.

6. The bladed wheel is turned with the aid of a four-block
pulley. On the right, in front of the mouth of the machine, I have
shownthe measuring apparatus: the drag of a smooth, elongated shape
is being determined.

The air flow is 71 cmwide and 62.4 cm high; accordingly, the
cross-sectional area of the flow is 443 sq. cm, or 0.44 sq. m. All
the dimensions of the machine can readily be estimated from the scale
at the foot of the drawing.

7- Figures 3 and 4 showthe measuring apparatus. The former
is an elevation (view from the side), the latter a plan view (from
above).

Fig. 4 shows how the tank_filled with water and the indicating

needle are displaced in the longitudinal and transverse directions.

The frame PP carries the tank _ in the longitudinal direction. In

this same frame, when stationary, the measuring apparatus or tank

can move in the transverse direction. The test shape (_, Fig. 3),

the drag of which is being measured, moves together with the tank.

The shape can be raised or lowered with the aid of wire supports n

of different lengths (Fig. 3).

Thus, any shape can be placed in any part of the flow, my

intention being to make possible the investigation of its various

zones.

8. The water-filled tin tank (see Figs. 3 and 4) is in the

shape of a rectangular parallelepiped, except that the rear portion

is sharply dropped. Inside floats another similar tank slightly

smaller in size and lacking a dropped section (indicated by dotted

lines in Fig. 5)- To the rear end of this floating tank there

is attached a brake m in the form of a tin plate. The dropped

part of the larger tank is also intended to permit the free move-

ment of this brake through the water. The object of the brake (the

size may vary) is to slow the longitudinal movement of the floating

tank and the indicator c connected with it.

In the old machine (Fig. l) I managed without a brake, from

which I conclude that the flow was more uniform. If greater re-

sources and more space had been available, I could have achieved the

same uniformity with the new machine, by making the spiral of

Archimedes less steep. The less the value of the coefficient a in

the equation of the spiral of Archimedes in polar coordinates

(r = a_), the more uniform the flow, but at the same time the

greater the width and height of the machine, even though the
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dimensions of the air flow remain the same.

9- To the bottom of the inner floating tank I soldered three

iron rods and over these I fitted three flattened tin tubes a.

The tubes pass through a wooden rod k, k or ruler. The ruler

itself is attached to two stands, also soldered to the bottom of the

floating tank. The lower tank containing the water is covered with

two small plates, between which a longitudinal slot runs the whole

length of the tank. The tubes a also pass freely through this slot.

As they move with the floating tank, they do not rub against or even

touch the edges of the slot, thanks to the rod k, k, which rolls be-

tween light wheels K, K turning on needle bearings. Since these

bearings are not easy to mount perfectly vertically, they must not

only pass through the centers of the discs but also through their

centers of gravity, otherwise the discs will revolve under the in-

fluence of their own weight and move the rod in one direction or the

other.

lO. The indicating needle or pendulum c, which also rotates on

similar, but horizontal bearings, is connected with the nearest tube a

by means of a light tie.

When the air flow is directed against the apparatus, the wind

exerts pressure on the shape and displaces the floating tank together

with the supports (n, a). By means of the horizontal tie (about 0.3

mm thick), this tank deflects the needle c from the vertical, this

deflection being the greater the higher the drag of the shape 9.

The deflection can be read off from a scale M, consisting of a ruler

graduated in millimeters, mounted horizontally at the foot of the

measuring apparatus.

I generally disregard the permanent tubular supports a and
their rods. Both these and the needle c are screened from the air

flow by plates the length of a finger and I-_2 to 2 cm wide.

In Fig. 3 the lower boundary of the air flow is denoted by

the broken line, so the greater part of the measuring apparatus is

not exposed to the wind. In spite of this, I also used a wide screen

_ for the greater protection of the wheels K, K and the measuring
apparatus as a whole.

However, this screen, which moves together with the tank,

does not extend into the flow and, in fact, barely reaches it (ex-

tends to the broken line in Fig. 3).

ii. Thanks to these screens, in determining the drag of the

test shape it is only necessary to take into consideration the

resistance of the upper supports resting in the tubular stands.

These cylindrical supports are normally slightly more than 1 mm

thick. If the upper wire supports are removed and the air flow started

D
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up, the needle remains motionless, pointing to zero. When the

needle deflects sharply, owing to the pressure on the test shape,

the supports are some distance from the screens and apparently less

protected, but experiments show that even when the screens are fur-

thest away they are still effective.

I conducted these experiments by removing the screens from

the left.

When the wind machine is in action, the needle still points

to zero, even when they are removed.

12. In view of the considerable length of the horizontal tie a,

which pulls on the needle, and of the needle itself, and, furthermore;

in view of the small deflection from the vertical, which does not ex-

ceed i00 mm on the scale M (see Fig. 3), I assumed that the wind pres-

sure was proportional to the linear deflection of the needle from the

vertical.

13. In order to test this theoretical conclusion in practice

and to reduce the readings of the needle to a definite value, I used

a light paper pulley block revolving on horizontal bearings (Fig. 3,b)

Over this block I passed a light thread, one end of which I

attached to a support a, so that it assumed a horizontal position.
From the other end of the thread I suspended a light cardboard box.

By virtue of its own weight (plus the weight of the thread) this

box caused the floating tank to move to the right_ pulling the

needle c out of the vertical. Let us assume that needle was de-

flected through 5 mm. I then placed a gram weight in the box and

observed how much the needle deflected from the zero mark. Let us

suppose that it deflected 105 mm. Then a gram weight is enough to

deflect the needle c through i00 mm, and a reading of I mm thus cor-

responds to a force of _I00 gram (about i0 dynes).

In this way I confirmed that the readings of the needle were

proportional to the intensity of the load, and hence to the intensity

of the wind pressure.

14. In order to measure forces of different magnitude I

prepared 4 needles of different weight. Details are given in the

table: the rows of figures represent (reading from top to bottom)

the number of the needle, beginning with the lightest_ the length of

the arm of the needle, to which the horizontal tie is attached, the

deflection of the needle in mm due to the weight of the box and

thread b and_ of course the weight of the needle and the deviation

of its center of gravity from the axis of rotation, the deflection

of the needle due to the combined action of the box and the load

(see last row of table; this load varied), t_e deflection in mm due
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to the action of the load alone, and, finally, the load itself in

grams.

15. From the table it is clear that a deflection of l mm cor-

responds, respectively, to forces of _200, 1/lO0, 1/50, and 1/25

grazns.

Knowing the deflection and the number of the needle, it is

always possible to compute the intensity of the wind pressure corres-

ponding to this deflection.

The needles had small attachments that could be changed or dis-

placed vertically in order to round off the readings to accord with
the above table.

16. In my latest experiments I express all the forces in

terms of the readings of needle No. 2 in mm; the deflection of this

needle through n mm corresponds to a force of _lO0 grams.

Thus, if I use the first needle (No. l) and get 28 mm, I must

divide this figure by two. If needle No. 4 gives me 20 mm, I must

multiply this figure by eight, that is, I get the reading that would

have been given by needle No. 2, assuming that its readings were un-

limited.

17. Thus, the readings of the first needle must be divided

by two, those of the second remain unchanged, those of the third must

be multiplied by two, and those of the fourth by eight.

As the weights (Fig. 2) are lowered to the floor, the bladed

wheel makes 33 complete revolutions. Apart from the weights, the

hook carries a special supplementary load. I varied this until the

wheel began to rotate under the slightest additional weight (for

example, 1/4 pound). On being set very slightly in motion, the

wheel comes to rest very slowly, even in the absence of a variable

load, if the supplementary (constant, fixed) load is properly chosen.

18. I shall make no further reference to the supplementary

load; all my remarks will relate to the variable load of i to 130

pounds.

During the first three revolutions the wheel gradually ac-

celerates, but starting from the fourth the time required for a

complete revolution is constant for a given load.

At the side of the wheel I arranged a bell, which rings

briefly at the beginning and end of each revolution. Observing my

stopwatch, I called out the time to an assistant whenever the bell

rang. From these figures it was easy to confirm the statement made

above.

19. In order to determine the time taken by the cord wound
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onto the central shaft to unwind, I considered only uniform rotation

of the wheel, i.e., the time taken to perform the last 30 revolutions

(33-3). For this purpose, I subtracted the time taken by the first

three revolutions from the total duration of the 33 revolutions. I

obtained the following table: (see /131).

The first line shows the weight of load in pounds (not in-

cluding the supplementary, constant load); the second line, the time

of the first three (non-uniform) revolutions; the third, the time of

33 revolutions; and the fourth, the time of 30 uniform revolutions.

20. From the table it is clear that the unwinding time is in-

versely proportional to the square root of the effective load. For

example, when the load is made 4 times greater the unwinding time is

_times or half as great.

The peripheral velocity (or angular velocity) of the wheel is

proportional to the square root of the load. Thus, when the load is

increased by 16 times, the angular velocity of the wheel increases by

or 4 times.

21. Hence we may deduce, with almost complete certainty, that

in my experiments the velocity of the air flow is also proportional

to the square root of the load. (Assuming, of course, that the density

of the air is constant.)

22. The models and apparatus arranged in the flow have no per-

ceptible effect on the speed of the wheel and, in all probability, on

the flow velocity itself, as may be seen from the following experiment.

23. For a rough investigation of the flow in the wind machine

and two reduced models of it, I set up a series of horizontal vanes

(Fig. 5) and also used thin threads suspended from an horizontal rod

(Fig. 6).

The first apparatus indicated the intensity of the flow pres-

sure simultaneously at different points in the flow*. The second

apparatus (Fig. 6) showed that only in the center part of the flow is

its direction perpendicular to the plane of the mouth of the blower.

*In fact_ the more intense the air flow the greater the deflection of
the surface of the vane from the vertical.
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In other parts of the flow it is directed somewhat toward the side,

though evidently the deflection is the greater the smaller the load.

The horizontality of the flow may be determined with the aid of

a light vane with the horizontal axis of rotation passing through its

center of gravity.

Without a system of baffles (Fig. 2) at the mouth of the

blower, there is an appreciable upward deflection of the flow. With

the baffles it is almost horizontal.

24. For a given load the readings of the needle (c, Figs. 3

and 2) were not generally constant. The needle moved as the wheel

revolved, and these fluctuations were the more considerable the

greater the measured drag and the more intense the air flow. The

greatest fluctuations were registered in measuring the pressure on

a flat plate. 0nly at small deflections and low flow velocities

was the needle almost stationary. I observed the needle throughout

the time taken by the cord to unwind; an assistant recorded my

readings. I made my observations at equal intervals of time (about

2 seconds) with the aid of a metronome, which ticked every 17/s

seconds.

25. The air flow ordinarily became steady after 5-10 revo-

lutions of the wheel, and it was from this point that the readings

were recorded. After the experiment I divided the sum of the read-

ings by the total number of observations, that is, I took the average

as the true value.

26. The average readings (sometimes derived from 40 observa-

tions) were, for the most part, found to be in agreement. However,

this was not always and not completely true. Often I carried out

two identical experiments and only if the average readings were suffi-

ciently close did I accept one of them or their arithmetic mean.

Altogether, my experiments involved several tens of thousands

of readings.

27. I investigated the flow: in the longitudinal direction,

along the flow axis (center-line of flow), and in the transverse

horizontal and transverse vertical directions.

My investigation of the flow in the longitudinal direction

gave the following results.

In general, these investigations always gave favorable re-

sults with respect to the uniformity of the flow.

28. Investigations in the horizontal transverse direction,

15 cm to the right and left of the flow axis, gave values of 34.1

and 35-9, which is somewhat higher than the previous figure. In
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general, numerous experiments of this type showed that the pressure

increases somewhat in the direction of the edges of a rectangular

flow and only falls again at the edges themselves.

Distance from mouth of

blower in cm

Resistance of 36 sq. cm.

square plate and

support

4o

34-9

6O

34.7

8o

34.7

io5

34.3

29. In order to investigate the flow in the vertical direction,

I took a long wire stand supporting a square that could be moved up

and down. This square I arranged to coincide with the five openings

of the blower mouth in succession (Fig. 2). Starting with the upper

horizontal opening, I obtained the following values:

33 33.5 33.5 33 33.5

I obtained this favorable result by deliberately varying the

inclination of the baffles. The plate was 40 cm from the mouth of the

blower. I noted that when the plate was arranged not opposite the

center of a particular opening but opposite the linen baffle the

pressure recorded was somewhat less. However_ the majority of the

test models were smaller than the openings and were unaffected by the

baffles.

30. In my apparatus the force exerted on the plate in no way

depends on the temperature and pressure of the air (I refer to the

barometric pressure). Actually, the density of air does vary with

the temperature and barometric pressure, but even if the density varies

there is no change in the wind pressure for a given load.

Let us suppose, for example, that the density of the air in-

r
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creases 4 times; then as a result of the greater resistance the

bladed wheel will rotate twice as slowly; hence the flow velocity

will be halved. For this reason the pressure on the plate will be 4

times less (proportional to the square of the flow velocity), but it

must also be 4 times greater owing to the assumed increase in the

density of the air. Thus, generally speaking, the pressure remains

as before_ in spite of the enormous change in the density of the air,

which may also be caused by an arbitrary change in temperature and

barometric pressure.

31. The same considerations apply to other surfaces and shapes.

However, the law stating that the resistance is proportional to the

square of the flow velocity can only be regarded as approximately

true. But, bearing in mind the quite insignificant variation in the

density of the air in practice, we may assume that in my apparatus,

in general, the drag of any shape is independent of the temperature

and the barometric pressure.

Thus, we may further assume that all my experiments were con-

ducted at normal barometric pressure and normal temperature.

Nevertheless_ I took care to perform my experiments at approxi-

mately the same air density_ slightly less than 0.0012 the density of

water.

32-34. My experiments have led me to the conclusion that the

pressure on a given plate arranged normal to the direction of the flow

is proportional to the load. The load varied between 5 and 130 pounds.

From these experiments I deduced that at a load of lO pounds the force

exerted on a square measuring lO0 sq. cm. is on the average 0.92 grams.

35- Of course, the resistance of the supports was deducted.

The supports were wires 1.15 mm thick, all of a length such

that the center of the square coincided with the center-line of the

flow, an arrangement which I always preserved in connection with the

other test shapes.

In the upper parts of the flow, along the edges_ I mounted two

horizontal rulers, each more than a meter long; over these a horizontal

transverse ruler was free to move, and from this was suspended a

vertical ruler graduated in centimeters.
The vertical ruler could also be moved, so that it could be

placed in any part of the flow and thus used (without a cathetometer)

to verify the position of the model.

36-37. We have seen that the flow velocity is proportional to

the square root of the load (21), and since the force exerted on a

square plate is proportional to the load (33), we can also say that

it is proportional to the square of the flow velocity.
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38. From the results of the experiments I further conclude

that the force exerted on a square plate is proportional to its area.

In my experiments this area varied between 1 sq. cm and 400 sq. cm.

39. In order to determine the force exerted on a square with

sides 1 cm long, I first determined the force on lO such squares

threaded on a very fine wire ring (Fig. 7), the resistance of which

was naturally deducted.

However, the mean pressure on larger squares proved to be

somewhat less, partly due to the effect of the baffles, partly due to

the small load* required and hence the low flow velocity, as a result

of which the flow diverges more strongly toward the sides and loses

strength more rapidly with distance. In the extreme case, the differ-

ence in pressure reached 3%.

40. Experiments with circular plates and other similar non-

elongated shapes without openings showed that the same law is applicable

to them too, i.e., their resistance is proportional to their area.

41. Experiments with a ring (Fig. 8) gave a value of 41,

whereas the pressure on an equivalent square plate is 35. The pres-

sure on a grill (Fig. 9) was found to be 47, whereas, judging by the

area, it should have been 35.

I performed a very careful experiment with a grid of squares,

shown in natural size in Fig. 91. A corresponding unperforated square

had an area of 256 sq. cm. In an experiment on this square the pres-

sure was found to be 0.711 per sq. cm (for a load of 8 pounds). The

area of the grid, with the holes deducted, was 192 sq. cm. In this

case the experimental pressure was 0.852 per sq. cm.

The ratio of the pressure on the grid to that on the continuous

plate is 1.2, i.e., there is an increase in pressure of 20%. The area

of the grid was determined before it was cut up, as in all such cases,

and, accordingly, the accuracy of the measurements of area can be ab-

solutely guaranteed. Is

42. Thus, on the basis of my experiments, I can express the

force F on a nonelongated continuous plate, mounted normal to the

flow, by means of the equation:

*At low flow velocities the needle oscillates less, giving a more

accurate mean result.
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F=A.S.v 2,

where A is a constant, v is the flow velocity, and S is the area of

the plate.

[]D[][][]DD_

dG[]D[]G_q

[]D[]EDNU_

_JDQ£ @qD_

Fig. 91 •

Here I can point to an analogy between the resistance of water

and the resistance of air. In fact, the force exerted by water and

air can be expressed by a single equation:

F=,.x.s.@,

t
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where F is the weight of I cu. meter of fluid (water or gas), S is the

area of the plate normal to the flow, g is the acceleration of terres-

trial gravity, v is the flow velocity, and ¢ is a coefficient.

According to Dubois and Duchmin, ¢ for water is equal to 1.43.

For air, according to the experiments of Cailletet and Colardo, this

value should be less, namely about 1.2; Langley gives a figure close

to that of Dubois, namely 1.4. However, Dubois and Duchmin found

1.43 for a plate moving in stagnant water, while for running water

(and a stationary plate) as might be expected they found another
value, namely 1.8622. '

Sometimes the ¢ for air is taken as a variable depending on

the size of the square, but, as far as I know, this is not done for

the resistance of water. In view of the constancy of this coefficient

for water (irrespective of the area) and in view of my own experiments,

in varying the area from I sq. cm to 400 sq. cm I was disposed, like

other investigators, to assume that the coefficient ¢ was constant for

air too (at least for relatively small areas and low velocities).

Obviously, in my equation

7"4
A _ _o

2g

43. The latest experiments of Cailletet and Colardo deserve

particular attention. They determined A for plates dropped from the

Eiffel Tower. For a temperature of IO°C and one new atmosphere (735

mm Hg; corresponding air density close to 0.0012 the density of water)

they obtained:

A = 0.071,

i.e.,

F = 0.071" S. v2 kg.

44. In my air flowj for a load of i0 pounds, the pressure per
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100 sq. cm is 0.92 gram. Hencethe pressure per sq. meter will be
0.092 kg. For a load of P pounds the pressure will be 0.0092 P.

From this equation and the previous one, assumingS = l, we

find: 0.0092- P = 0.071" v2 j, whencev = 0.12958 P, or, approximate-

ly, v = _ 0.13 • P; whence P = 7.717" v2 or, approximately, P = 7.72- V 2 .

47 .IT These equations enable us to compute the load producing

a given flow velocity.

48. It is also easy to compute the velocity corresponding to

a given number of pounds (see Table on next page).

50. Knowing that the diameter of the bladed wheel is i meter,

from (19) we can determine the rim velocity of the wheel for any load.

Thus, for a load of i pound it is 0.857 meters per second. On com-

paring this rim velocity with the flow velocity for the same load of

I pound (48), we get: 0.361:0.428 = 0.84, i.e., the flow velocity is

0.84 times the rim velocity or the velocity of the parts of the blades

furthest from the axle.

The loss of velocity is equal to 16% or about 1/6 of the ve-

locity at points on the rim.

The figure for the earlier wind machine (Fig. I) was almost

the same (0.83) (see "Air Pressure").

53. For the experiments with elongated rectangles I set up a

wire square with four pins soldered to it. To the pins I attached a

frame consisting of four strips of cardboard (Fig. I0). The perimeter

of the wire was 94 cm, the same length as the center-line of the frame.

54. The following table gives the results of these experiments*.

55. The first row gives the width of the rectangle in centi-

meters, the second the total area of the frame in square centimeters,

the third the aspect ratio or the ratio of the length of one of the

four rectangles composing the frame to its width, and the fourth the

pressure in millimeters (i mm = i/I00 g) per I00 sq. cm of the surface

of the frame for a load of I0 pounds.

*Of course, the proximity of the four rectangles could not fail to

affect the results of the experiments.
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The relation between the aspect ratio and the resistance may be

expressed by a curve with the aspect ratio plotted along the x-axis and

the resistance along the y-axis.

As nearly as possible I drew a smooth line between the points

thus obtained. On examining this curve, it occurred to me to express

it by means of the simple equation:

Y = A + B lOgl0X ,

where A and B are constants, Y is the resistance, and X is the aspect

ratio of the rectangle.

56. In order to determine the constants, I substituted in

this equation two pairs of coordinates obtained experimentally, namely

the resistance corresponding to the aspect ratios 23.5 and 1.3.
I then found

Y = 88.15 + 25.03 lOgl0X.

Note that the last row of the table was derived from a double

series of average observations and that in the experiment with the

rectangle having an aspect ratio of 1.3 I, of course, used not a

frame, but a single larger rectangle (covering the entire wire square).

The formula is not applicable to aspect ratios of more than 25.

According to the formula, the resistance increases continuously, though

very slowly, with increase in the aspect ratio; according to the ex-

periments, however, it evidently tends to a known limit, so that what-

ever the aspect ratio the resistance need not be taken as greater than

125-130.

Even in this case, it is 40% greater than the pressure on an

equivalent square plate. This increase can not be attributed to

errors in the observations or inaccuracies in the apparatus. However,

I would have been more doubtful of my conclusions, if I had not found

them quite clearly confirmed by observations on the drag of wires and



and elongated cylinders in general.

Scale 1/2"

Fig. I0.

The formula also ceases to apply when the aspect ratio of the
rectangle is small_ less than 1.3, for example; then the pressure is
determined in the sameway as for a square.

59. It turns out that if several squares are joined to form
a long rectangle, the pressure increases. This increase is the
greater the closer together the squares. The pressure on a series of
closely spaced squares is greater than that on a similar series of
squares spaced further apart.

This fairly delicate experiment was conducted with the aid of
the model illustrated in Fig. 12. The squares can be slid along the



a

r

179

wires, either toward or away from each other.

Scale i/4"

i []

Fig. 12.

61. The question of the drag of various elongated solids of

revolution is particularly important in relation to the design of

controlled aerostats. Accordingly, though not exactly on the spot_ I

undertook to determine the drag of such bodies (Fig. 14). The draw-

ing shows the greatest longitudinal cross section. Clearly, this

cross section is defined by arcs of two equal circles. As usual_ the

center of each model was placed on the center-line of the flow or at

its axis. The drag was determined with special care in view of its

low value for bodies of this kind (cf. Figs. 2 and 3).

There follows a table giving the dimensions of the bodies.



180

o

40
L)

ap

r-4

o
,rl

m

0

-p

.r-t
A

©
4_

k_

t_

oJ

,--4

0 _ L_ -U_ OJWh Wh _4 0

L_ 0 CO Ch 0 <0

-4 .... ,,_ b-

0 0 0 u'x 0 0

CO CO CO CO CO cO

04 0.1 _ LO, .-J" .._

,--I

0 0 h'_ 0 _ L_

d d d _4 & d
_ Wh Wh _ Wh



181

From left to right the columns show: the length of the per-

imeter of the average cross section_ its diameter, its area, the length

of the body_ and its aspect ratio or the ratio of the length to the

greatest width (diameter). The linear dimensions are given in centi-

meters_ the areas in square centimeters.

Scale VS"

.°

Fig. 14.

65. When the longitudinal axis of the bodies was arranged in

the direction of flow, I obtained the drag table given below. In the

table the forces are expressed in terms of the deflection of the

needle_ in millimeters per i00 sq. cm of the greatest cross section.

I have divided the values obtained for the drag by the cross-sectional

area from the table (64) and then multiplied by I00. The experiments

were performed with different loads, as indicated in the first row of

the table.

From any row of the table, i.e., for any body_ we see that the

drag is not proportional to the load or to the square of the flow

velocity.
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Thus, when the load is raised from l0 to 100 pounds or multi-

plied by 10, the drag is not l0 times greater, in fact, the increase

is much less, namely, for bodies with the aspect ratios given in the
table,

4.5 5.9 5.8 6.7 7.1 and 7.6 times greater.

It is remarkable that for the bluntest body we get the bes_ re-
sult. Thus, the drag of smooth solids of revolution is not at all

subject to the same law as the drag of plates.

Let us now take any column of the table, corresponding to
bodies with different aspect ratios but the same flow velocity. We

see that as the aspect ratio of the body increases, the drag de-
creases only up to an aspect ratio of 3.33; as the aspect ratio rises

further, the drag begins to increase again.

Thus, at any flow velocity, the minimum drag is displayed by a
body with an aspect ratio close to 3.33 Is.

81. On examining the curves of drag vs. load (Fig. 23)3 we

see that they resemble the arc of an hyperbola# taken at some dis-

tance from the vertex. In fact, no equation expresses my experiments

with elongated bodies as accurately as the equation of an hyperbola

in rectangular coordinates, the origin of which lies on the curve at
a certain distance from the vertex.

82. Assuming that the coordinate axes are parallel to the axes

of symmetry of the hyperbola, we get an equation of the form:

JAx2y= +Bx+C -D,

where the ordinate y expresses the drag and the abscissa x the load

created by the wind; A, B, C, and D are constant positive numbers.

In order to determine these constants, it is necessary to take four
pairs of coordinates from the drag curves.

83. Solving the system of four equations for each aspect ratio,

we get the following values of A, B, C, and D:
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90. Hence it appears to follow that the most favorable aspect
ratio is close to 3 and that the greatest fonm factor does not exceed

32. In connection with the latter, I conducted a series of experi-
ments with bodies of the same shape (that is, similar bodies), but

different size, which showed that as the size of a body increases so
does its form factor.

91. I made three elongated bodies with an aspect ratio of 4.2

(Fig. 24).

Fig. 24.

The cross section was square. I prepared these models as

follows. On cardboard I drew a curve based on the equation

y = A" cos x,

where A is a constant less than unity. By means of two such identical

curves I defined a cardboard shape, so as to obtain a symmetrical

elongated plate. I then glued four of these plates together to form

a single body. The biggest of these bodies was 68 cm long, the second
was half as long as the first, the third half as long as the second.



187

92. The corresponding form factors a_e given in the following
table:

Length

(cm)

17

34

68

Cross -sectional

area in sq. cm.

17.6

66.0

263.0

Load in pounds

4 8 16 32 64

4.7

4.7

5.4

4.4 4.9 6.9 7.4

5.1 5.4 7.1 8.2

6.3 6.9 8.0 8.8

128

7.9

9.5

9.9

The rows of the table show how the form factor increases with

increase in the load.

The columns show how the form factor increases with the dimen-

sions of the model, though the flow velocity remains the same. These

experiments are only rough, but they certainly make it clear that the
form factor increases with the absolute dimensions of the body*.

93. The form factors of very elongated solids of revolution,

obtained in my experiments, may well increase many times over with

increase in size to the dimensions of an airship.

The problem of whether this increase will be more rapid for

slightly or strongly elongated bodies is one that I shall leave for a
future occasion.

*I very distinctly observed an analogous phenomenon in similar ex-

periments with water. This must be very familiar to naval architects.

Experiments in water to determine the drag of a ship are made only
with models of considerable size.
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I01. In order to determine the resistance of inclined plates,

I began by using three squares of different sizes (25, 100 and 400

sq. cm) and two identical rectangles with an aspect ratio of 3 and

an area of 48 sq. cm (4 x 12). I arranged the rectangles with their

long sides now vertical, now horizontal. I could rotate these rec-

tangles about their vertical axis through a definite number of

degrees. In order to measure the angle between the plate and the

direction of the air flow, to the back of the rectangle (or square)

I attached horizontally a small cardboard protractor. A needle at-

tached to the axis of rotation (i.e., the fixed wire about which the

rectangle revolved) marked off on the protractor the inclination of

the plate in relation to the direction of flow.

102. At angles of 90 to 50 ° the measuring apparatus was ar-

ranged as usual; at angles between 40 and 0° the apparatus (the water-

filled tank, the indicator and everything floating in the tank) was

arranged at right angles to the usual position (see Figs. 29, 30 and

4).

103. In the first case, in order to obtain the component of

the wind pressure normal to the plate, it is necessary to divide the

resistance obtained from the experiment by the sine of the angle of

inclination; in the second case, in order to determine the same com-

ponent perpendicular to the plate it is necessary to divide the re-

sistance by the cosine of the angle formed by the direction of the

flow and the surface of the plate 19.

107. As a result of the experiments I was able to compile the

following table for the three squares and two rectangles.

108-109. The first row shows the inclination of the plate to

the flow. The next three rows show the pressure on the squares of

different areas (cf. first column). The last two rows show the pres-

sure on the same rectangle, with an aspect ratio of 3, arranged with

first the long side, then the short side perpendicular to the flow.

It should be noted that all these pressures are referred to an area

of I00 sq. cm and a load of I0 pounds.

112. On comparing the figures for the pressure on the two

larger squares (400 and I00 sq. cm), we note that the values are not

very different; we also note that at an inclination of 60-5 O° the pres-

sure has a maximum, which exceeds the perpendicular pressure by 2-3%.

113. Why the small square (25 sq. cm) gave figures considerably

different from those for the larger squares I shall not take it upon

myself to explain. I shall merely say that the experiment on the lO0

sq. cm square was conducted with particular care and many checks.
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114. It is interesting to compare the pressures on the two

identical rectangles at the same angle of inclination to the flow

(see last two rows of table).

Thus, at an inclination of lO ° the pressure on the rectangle

arranged along the flow is three times less than that on the same

rectangle arranged transversely to the flow. As the inclination in-

creases, this pressure ratio steadily declines, so that at 30-40 ° it

is close to unity.

--_:"' ; ..Z"_.'.'t.J/!

I I

I J

I. j

C_ w

i

m" .t_

.I

lJ
?P ?n

i !
I

_ I
6C' ,_.e ,'_

I

I

Fig. 31.

115 . Other things being equal, the pressure on a square is

more or less a mean of the pressures on equivalent rectangles ar-

ranged as described.

Curves plotted on the basis of the table (see Figs. 31-35) give

a clear idea of the laws of pressure for squares and rectangles.

i16. From the first three drawings, for squares, we see that

the normal pressure varies little at angles of inclination from 50 to

90 ° . We also see that at very acute angles the pressure increases

more rapidly than the inclination.

I17. From Figs. 34 and 35, for the rectangle, we note the

following:

When the rectangle is arranged across the flow, the pressure
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increases more rapidly than its inclination to the flow; on the other

hand, when the rectangle is arranged along the flow, the opposite is

true (as with a square); in the former case, the rapid increase in

pressure is also accompanied by a fall in pressure between 30 and 40°;

in the latter, a slow initial increase is followed by a more rapid

_se and a pressure maximum close to an angle of inclination of 50 °.
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Fig. 34.

I18. A comparison of Figs. 34 and 35 also reveals why the

wings of birds and insects are arranged transversely to the counter-

flow of air and not parallel to it. In fac% at small angles of

inclination, this arrangement results in a pressure several times
greater than that given by the opposite arrangement of the wings.
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119. The above experiments were conducted with cardboard

plates somewhat less than l mmthick. I next made four pairs of

1

similar rectsm_les out of tin sheet _ mm thick.

Each pa_r consisted of identical plates differently arranged.
Their dimensions were as follows:

5 X 10.5 X 15.5 X 20 and 5 X 25 cm.

The experiments were performed as described above.

120. The results are presented in the table (see p. l_!_).

124. A description of the table would be superfluous, since

it is the same as the previous one. It starts with the most elongated

rectangle arranged along the flow and ends with the same rectangle

arranged in the opposite manner, with the long side perpendicular to

the air flow. The center row, of course, relates to a square. Set

out in this way, the table clearly shows how, at a given inclination_

the pressure increases continuously with increase in the aspect ratio.

This can be observed up to 25-30°; beyond that the pressure varies

little_ in spite of differences in the aspect ratio. Up to the same

angle the pressure difference between the two rectangles is the

greater the greater their angle of inclination to the flow _°.

134. Taking the rectsm_le with an aspect ratio of 4 (5 X 20)

inclined to the flow at an angle of l0 ° and arranging it in the two

opposite ways described in relation to the flow_ I obtained the

following results:

When the short side was perpendicular to the flow:

Loads:

Pressure:

I0, 40_ 80 pounds

5.2, 20.3, 40.0 ram.

With the rectangle in the other position I obtained:

Loads: 5, lO, 20, 30 pounds

Pressure: 12.6, 24.1, 43.9, 65.0 mm.
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135. From these and similar experiments I found that the pres-

sure on any flat plate, however arranged, is approximately proportional

to the square of the flow velocity or to the load.

147. The results I obtained with rectangles inclined or per-

pendicular to the direction of the flow can not be compared with those

of other investigators, although it has long been known that the same

elongated inclined plate creates greater resistance if the long edge

is perpendicular to the flow (Langley, Aman). Perhaps other, more de-

tailed experiments have been performed, but if so I am unaware of them*.

148. However, I can compare my investigations of the wind

pressure on an inclined square with the results of others.

At the same time, it is generally assumed that the laws of

pressure for a square are equally applicable to any elongated plate,

which -- if my experiments are correct -- is a great mistake.

For purposes of comparison, let us take the formulas of Newton,

Leslie, Rayleigh (or Gerlach), Langley (or Duchmin) and my previous

experiments dating from 1897-1898.

With the aid of these formulas I have compiled the following

table of pressures for a nonelongated inclined plate. I was obliged

to take the wind pressure perpendicular to the plate as unity, since

in this respect the disagreement among scientists is horrifying. I

myself, using squares of different sizes, obtained results that were

not entirely consistent.

However, since I made especially careful measurements with the

square 100 sq. cm in area (the pressure was determined not less than

twice, upon rotation through a given number of degrees to right and

left of the direction of the flow), I have tabulated the figures re-

lating to this particular square.

In the formulas given in the table, F denotes the force acting

on the inclined square; F 1 the force acting on a square normal to the

direction of the wind; i the angle of inclination of the plate to the

flow in degrees; _ the ratio of perimeter to diameter.

149. If we compare, for an inclination of 5°, the figures of

Langley and New_on, we find that Langley's pressures are 23 times

greater than those of Newton. At more acute angles the difference is

even greater.

*I now know that the curves obtained by Langley closely resemble mine.
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In spite of this, Newton's formula still holds an honored place

in various engineering books and not only in relation to aeronautical

but also in relation to marine engineering (determination of the water

pressure on a moving ship).
This formula is still recommended by the Prussian Academy of

Structural Engineering for determining the wind pressure on an in-

clined plane. All this shows how slowly new knowledge is disseminated,

even among scientists.

150. On examining the table, we see that the figures for the

pressure have increased continuously with the passage of time. Thus,
the smallest values are given by Newton's formula, the largest are

mine, if we disregard the acute angles, at which there is a great
similarity between my figures and those of Rayleigh and Gerlach (theo-

retical) and Langley (experimental).
There is also a difference between my first and my latest ex-

periments, which were repeated several times; at average angles this

approaches 9%-

151. If my experiments are accepted, then at acute angles,

less than l0°, it is more correct to use the formula of Lord Rayleigh,

whereas at angles of more than 15°, Langley's formula is nearer the

truth, as well as being simpler.

152. For acute angles between 5 and 35 ° it is even simpler to

employ Leslie's formula, provided the coefficient is changed. We then

get:

F = F I" i.?" sin i.

Using this formula I have computed a series of pressures for

augles between 5 and 45° and compared them with the pressures obtained

in my experiments.
From the table it is clear that the pressures calculated from

the modified Leslie formula differ from my findings by not more than

5%, as the angle varies from l0 to 35 °.

153. On examining the first curve in Fig. 36, that corres-

ponding to a square, we see that the initial section of the curve is
close to a straight line. Hence, for the pressure on an inclined

square up to an inclination of 30 ° we shall have an even simpler

formula, namely:



2OO

F=A-i,

where i is the angle of inclination of the plate to the flow in de-

grees. Then, in accordance with the experimental data, we find

F= 2.1-i_

where F is the force acting on an area of I00 sq. cm at a flow ve-

locity of i meter per second.

Angle in 5 io 15
degrees

Leslie's

formula

modified)

O.148

My ex-
o.13o

periments

o.2% 0.440

0.290 0.440

2O

0.581

0.600

25

0.719

O. 745

3o

o.85o

o.86o

35

0.976

o. )25

4o 45

1.09 1.2o

0.97 0.99

Using this formula, I have computed a series of pressures, which

I have compared with the pressures found experimentally.

Hence we see that up to 35 ° the difference is comparatively

small.

154. In general, for a square_ circular or any other non-

elongated plate we can write:

2
F = 2.1- i" S" v _

and in practical units (meters, kilograms):
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F = 0.0021. i. S. v2.

155. Whena rectangle, ellipse or other elongated plate is
arranged transversely to the flow, sothat the long side or axis is
perpendicular to the direction of the flow, we can also take equally
simple formulas for the pressure.

Angle in degrees

Formula

Experiment

5

I0.5

9

I0 15

el 31.5

21 32

20 25 3o 35

42 52.5 63 73- 5

44 54.5 63 67.7

4o

81.9

7O. 5

However_ the more elongated the plate_ the less the angle of

inclination up to which the formula is applicable.

For aspect ratios of from 2 to 5 1 have derived formulas that

can be used with confidence up to angles of I0-15°:

Aspect

ratio

2

3

4

5

Formula for pressure

F:2.7.i.s._

F: 3.2.i.s.v 2

F = 3.5. i. S. v2

F = 3.6. i. S.v 2

In order to obtain practical coefficients it is necessary to
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divide these coefficients by I000. For example, for an aspect ratio

of 5 we get: F = 0.0036. i. S. v2 kilograms.

Fig. 36.

For airplanes with plane wings I can recommend the formulas

of (155), since_ as we shall see_ the most favorable angle of inclina-

tion for an airplane scarcely exceeds lO-15 °. Moreover_ to get the

full advantage of an airplane design it is necessary to use elongated

wings arranged with the long side perpendicular to the wind or to the

counterflow of air, exactly the conditions under which these formulas

are applicable.

It is often necessary to know the component of the wind pres-

sure in the direction of the wind itself or in a direction perpendicu-
lar to the latter.

My formulas give only the pressure normal to the plate_ i.e. 3

the approximate (neglecting friction) resultant.

If we denote the latter force by F, the component in the di-
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rection of the wind will be equal to F. sin i, where i is the angle

of inclination of the wind velocity to the plate. The component in a

direction perpendicular to that of the wind velocity maybe expressed
as F. cos i.

Actually, in my experiments I determined these components, but
converted them into the force acting normal to the plate.

156. Let us now consider the resistance of a right circular

cylinder. In these experiments I used 13 cylinders of almost the same

diameter (5 cm), but different heights (1-25 cm); moreover_ lO cylin-

ders about lO cm in diameter and 3-50 cm tall; then 5 cylinders 25 cm

tall, but differing in diameter (1.05-5 cm); and, finally, two

identical cylinders 0.9 cm thick and 39.2 cm long terminating in

sharp cones. Here I have given the total length of the cylinder and

cones (39.2). I also used round wire from 0.365 to 3 mm thick.

157. By arranging the small cylinders, 5 cm in diameter, with

the axes parallel to the direction of the flow and exposing them

to the flow of air produced by a load of 32 pounds, I obtained the
results presented in Fig. 43.

The ordinates, in millimeters of length, express millimeters

of pressure, reduced to an area of lO0 sq. cm and a load of 8 pounds

(or a velocity of l m/sec); the abscissas denote the aspect ratio of
the cylinder or the ratio of the length to the diameter of the base.

159. The figure shows clearly how the pressure falls, at

first very slowly, then very quickly; later the fall is slowed, then

stabilized, and finally the curve begins slowly, but continuously to
rise.

160. In order to verify these conclusions, I perfonmed equal-

ly accurate experiments with better constructed and larger cylinders,
namely those lO cm in diameter.

These experiments were performed with particular care at a

load of 8 pounds, that is, at a velocity of 1 _sec. The results are
shown in Fig. 44. This figure permits the same conclusions as the

previous one, but the curves are not exactly the same. The ordinate

corresponding to an abscissa equal to zero indicates the pressure on

an infinitely small c ylinder, i.e., on a circular plate.

161. These experiments are very important, since the results

are applicable to all right prisms and cylinders with a nonelongated

base. (Cf. "Air Pressure," section 122.)
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162. The curve of Fig. 44, which in my opinion is of consider-

able interest_ makes it possible to determine the probable pressures

on the base of a cylinder for different aspect ratios sl. For this

purpose, it is necessary to express in millimeters the ordinates of

the curve corresponding to the required abscissas, i.e., the required

aspect ratios of the cylinders. Then we get the pressure in conven-

tional units (I mm = I/i00 gram) acting on i00 sq. cm of the base of

the cylinder for a flow velocity of i _sec (see following table).

163. From this table it is clear that the pressure on the

cylinder is a minimum at an aspect ratio close to 1.2.

If we were given a certain right prism with a not too elongated

base, we could determine the wind pressure in the direction of the

axis either from the table or directly from the curve in Fig. 44.

For this purpose_ we compute the diameter of the circle_ the

area of which is equal to the area of the base of the prism. The

ratio of the height of the prism to the diameter of this circle is

the aspect ratio of the prism. Suppose it is 1.2; then, from the

table, we find that the pressure on the prism is 50.5 mm or in

practical units: F = 0.0505" S. v 2 kilograms, where S is the area of

the base of the prism in sq. meters.

164. In experiments with water similar to those described_

Dubois and Duchmin made certain observations on prismatic bodies

which are illustrated in Fig. 45. The upper curve relates to a sta-

tionary body and a moving liquid, the lower to a moving body and a

stagnant liquid. It is strange that the two curves do not coincide

even approximately _ .

However this may be, the phenomenon repeats itself in water in

almost exactly the same way as in analogous experiments in air_ as is

perfectly evident from a comparison of the curves in Figs. 44 and 45.

165. In order to determine the transverse drag of a cylinder,

i.e., that corresponding to a flow perpendicular to the axis of the

cylinder, I performed another two series of experiments (cf. Figs.

46 and 47).

I performed experiments on the small cylinders (5 cm in diame-

ter) at loads of from 8 to 32 pounds. I reduced the pressures ob-

tained to a load of 8 pounds or a velocity of i _sec and to I00 sq.

cm of the area of the longitudinal (axial) cross section of the cylinders.

*This may depend on the difficulty in determining accurate values of

the velocity of the liquid.
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166. The results are presented in Fig. 46.

167. For the reasons already mentioned, the experiments with

the larger cylinders (lO cm in diameter) necessarily gave better re-

sults, as may be seen from Fig. 47; here the experimental points lie

closer to the smooth curve than in Fig. 46.

From these two drawings it is clear that the drag increases

with increase in the length of the cylinder, tending to a certain

limit, so that the curve must have an asymptote parallel to the x-axis*.

168-169. Giving preference to the curve shown in Fig. 47, I

shall use it to compile a table of resistances and drag coefficients

for a transverse flow acting on cylinders with different aspect ratios.

The first columns of the table show the aspect ratio of the cylinders.

The second columns show the resistance in conventional units (mm per

100 sq. cm) for a flow velocity of 1 m/sec.

171. The third columns give the drag coefficients or the

pressure compared with the pressure of the same flow on the axial

section of the cylinder (assuming it to be square).

From the table we see that these coefficients are far from

being constant, as it is customary to suppose on the strength of

existing theories, for in my experiments they vary from 0.46 to 0.64

(an increase of 39%).

172. The fourth columns give the form factor of the cylinders

with different aspect ratios or the ratio of the pressure on a square

plate, the area of which is equal to the area of the longitudinal

section of the cylinder, to the resistance of the cylinder itself,

other things being equal.

Short cylinders have the greatest form factor; then, as the

height of the cylinder increases, the form factor diminishes, evident-

ly approaching a certain limit, beyond which it cannot diminish further.

The drag of a cylinder is found to be 1.5-2 times less than

that of a square plate.

According to my 1897 experiments ("Air Pressure," section lll),

the'drag coefficient of a cylinder with an aspect ratio of 2 (length

l0 cm, diameter 5 cm) is 0.63, i.e., greater than the tabulated value

(0.552). In this case, the difference is due to the larger dimensions

of the tabulated cylinders. Given the same dimensions (cf. the ordinate

for an aspect ratio of 2 in Fig. 46), we get exactly the same coefficient.

*Do not forget that, as almost always, the drags are reduced to unit

cross-sectional area.

i ii
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173. Apart from the experiments with these cylinders, I per-
formed experiments with cylinders with greater aspect ratios -- up to
44.

Here is the table for these cylinders and the results of ex-

periments with them:

Reduced to a load of 8 pounds

Diameter of base of cylinder
in cm

Aspect ratio

Pressure per lO0 sq. cm for
a velocity of 1 _sec

Drag coefficient

Form factor

3.90

6.4

55.2

0-75

1.333

For 8 pounds

2

2.87

8.7

59.5

o.81

1.237

1.97

]2.7

58.4

o.8o

1.260

For 32 pounds

4 5

1.05 0.9O

23.8 43.6

59.4 61.7

o.81 o.84

i.237 i.194

Hence we see that with increase in the aspect ratio the drag co-

efficient also increases. However, this increase may be due to the

small thickness of the cylinders employed.

The drag coefficient for thin wires also increases, as we shall

see.

175. A wire is also a cylinder. Therefore I shall introduce

here the results of experiments on the resistance of wires. These re-
sults are shown in Figs. 50, 51 and 52. The wire used was from 0.365

to 7.1mm thick.

179. On drawing through the experimental points smooth curves

representing the resistance as a function of the thickness of the wire

and measuring the ordinates of the curves, we get the following table.

r
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From this table it is clear that the drag coefficient decreases

with increase in the flow velocity and, in general*, with increase in

the thickness of round wires.

The last three columns express the resistance in relation to

the resistance of a square plate, the area of which is equal to the

longitudinal section of the wire. From these columns it is clear that,

at low flow velocities, a thin wire offers even greater resistance

than a flat plate under the same conditions.

The conclusion is paradoxical, but may be explained_ on the one

hand, by the high aspect ratio of the wire cylinder and, on the other,

by the laws of friction, which, as we shall see, is very great for

small surface areas and small flow velocities.

Though there is no doubt that the round shape of the cross

section of the wire is efficient in cutting through the air, this

advantage is outweighed by the friction, which is very high for low

velocities and short (in the direction of the flow) surfaces.

Thus_ the experiments with cylinders of different thicknesses

and aspect ratios led me to the conclusion that the transverse drag co-

efficient of a cylinder may fluctuate_ at least between 0.46 and 1.29,

whereas, theoretically, any of the existing formulas gives a single

drag coefficient for any cylinder.

This clearly reveals the total inadequacy of all the existing

formulas and methods of determining the resistance of a cylinder (and

practically all other bodies and surfaces).

2
Newton's formula gives a coefficient of -- or 0.667 for a

3

cylinder. According to Leslie, we find w/4 = 0.785. Langley and

Rayleigh give even higher values.

Of course, the agreement with my experimental coefficients may

be purely a matter of chance.

181. The resistance of a wire is equal to

2
F=kSV,

*If we are to trust the experiments, at very small thicknesses the

coefficient decreases; this may be due to the adhesion of air, which,

as it were, makes the cross section of the wire more elongated.



where k is a coefficient from the table in (179), divided by lO0, S

the area of the longitudinal section, and V the velocity. It is clear

from the above that the drag coefficient of a cylinder in a flow per-

pendicular to its axis depends not only on the aspect ratio of the

cylinder but also on its absolute dimensions.

l f

Fig. 54.

Given the same aspect ratio and flow velocity_ the drag co-
efficient will be the greater the more slender the cylinder. The flow

velocity also has an influence, and by no means a negligible one, on
the value of the coefficient; with increase in velocity the coeffi-

cient decreases. General formulas for the drag coefficient K of a

cylinder should give the dependence of the coefficient on the aspect

ratio of the cylinder L, the flow velocity V, and the diameter of the
base D: thus, K = F (L, V, D), where F denotes a function.

Before a thorough study has been made of the laws of friction,

upon which the drag of a cylinder (like any other body) partly depends,

it would be premature to dream of establishing the exact form of the

above function.
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183. The determination of the wind pressure on an inclined

wire is also a matter of some practical importance.

It is possible to determine the horizontal and vertical com-

ponents of this force.

For these experiments I constructed a light paper cylinder (Fig.

54) 26 cm long and ending in two sharp cones, each 41/4 cm long and
about O. 9 cm wide at the base.

I regarded this cylinder as an infinite cylinder, since the

resistance of the cones in the axial direction (i.e., along the

length of the cylinder) could not be very great.

To the cylinder I attached a small quadrant with a needle that

indicated the inclination of the cylinder in relation to the flow.

187. I performed the experiment at three flow velocities: l,

2 and 3 meters per second. The values I obtained for the pressure in

the direction of the flow I reduced to a velocity of 1 _sec, but I

did not reduce them to an area of i00 sq. cm of the longitudinal sec-

tion. From the table (section 179) I saw that the pressures at ve-

locities of 2 and 3 _sec are not very different, and accordingly I
took their average value. I then took the pressure perpendicular to

the axis of the cylinder as unity and thus obtained the following

table of ratios for the various inclinations of a virtually infinite

cylinder.
From this table it is clear that the ratios differ very little

at different velocities, starting from an angle of inclination of lO°;
therefore we can take the last column of figures as constant and

applicable to any flow velocity.

190. In exactly the same way we can obtain the component of
the wind pressure in a direction perpendicular to the flow. For this

purpose, the measuring apparatus, as always in such cases, was ar-
ranged in a position perpendicular to that originally employed.

192. The experiments were performed at flow velocities of 2

and 3 _sec, and the results are presented in the following table.
The pressure on the cylinder in a flow normal to the axis was

taken as unity.
This table shows the component of the resistance perpendicular

to the flow, in relation to the maximum resistance with the flow

normal to the axis of the cylinder.
If we have a coil of wire and need to know the vertical wind

pressure upon it, we can use the table below (see p. 217). In general,

the force acting on the wire will be:

K
F : _-K • S.V2 kg

I000
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where K is the pressure on the cylinder in mm per i00 sq. cm at a

velocity of I _sec, K I is taken from the table 3 S is expressed in

sq. meters, and V in m/sec.

Angle of inclination

in degrees

0

I0

2O

30

4o

5o

60

7o

8o

9o

Coefficient K (mean value

from experiments at

velocities of 2 and 3 m/sec)

0. 0000

o.o6io3

o._96

O. 2034

O. 2863

0.3361

0.3263

O. 2717

o. 1609

0.0000

195. Without having exhausted the question of the drag of right

circular cylinders, I shall now turn to right elliptical cylinders.

I made 20 models of cylinders of this type l0 cm tall, about 5

cm wide, and from 5 to 42.3 cm long. The corresponding aspect ratio

or ratio of length to width (major and minor axes of the elliptical

base of the cylinder) varied between 1 and 8.6.

I also arranged the same cylinders transversely to the flow,

making the corresponding aspect ratio less than one, i.e., I took the
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reciprocal of the length-to-width ratio, which varied from 0.164 to 1.

Thus, altogether I employed aspect ratios varying from O. 164 to 8.6.

196. Below I give a table obtained from observations on

cylinders arranged parallel to and across the flow. The experiments

were performed at loads of 8, 32 and 72 pounds or at velocities of
i, 2 and 3 m/sec.

The first column indicates the aspect ratio of the cylinder,

the second, third and fourth the resistance, reduced to 100 sq. cm of

the greatest section of the cylinder perpendicular to the flow and to

a load of 8 pounds or a velocity of I _sec.

Finally_ the last three columns give the form factor of the

cylinder_ for the same three flow velocities -- l, 2 and 3 _sec.

198. In the case of highly elongated cylinders arranged across

the flow, the drag is close to that of a square plate equal in area to
the longitudinal section of the shape (see following table).

Moreover, when the aspect ratio is less than 2, the coeffi-

cients depend very little on the flow velocity. At high aspect ratios,

however, we note that the drag coefficients decrease with increase in
the flow velocity and the aspect ratio of the cylinder. At an aspect

ratio of about 6 this decrease in the coefficients stops, and with

further increase in the aspect ratio the coefficients even begin to
increase.

199. It is noteworthy that the moment of minimum drag occurs

at the same aspect ratio for all the flow velocities employed. I had

already observed this phenomenon in connection with relatively elongated
solids of revolution.

The only difference is that with the latter the minimum drag

coefficient corresponded to an aspect ratio half as great. For solids

of revolution, the maximum form factor, at a velocity of 3 _sec, is

11.7, whereas with an elliptical cylinder, at the same velocity, it

is 4.7, i.e., less than half as much. However, if we take a cylinder

bounded by arcs of a circle, i.e., a tapering form, the maximum form

factor is almost exactly half as great as that of a body formed by
rotating an arc of a circle (see the table in section 219).

204. The following practical table (see pp. 221-222) gives the

resistance in mm, reduced to lO0 sq. cm of projected area and a ve-

locity of l_sec.
Up to an aspect ratio of 1.4, the coefficients differ very

little at different flow velocities, and, accordingly, for any ve-
locity we can use a resistance F = K. S. Vs, where K is a coefficient

from the table below divided by 1000, and S is the projected area in

sq. meters, i.e., the area of a central section of the cylinder formed

by intersection with a plane normal to the direction of the flow.

!rI
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208. I built several cylinders (or right prisms) with bases

either polygonal or curved, my object being to determine the drag and

compare it with that of an elliptical cylinder, which I had already
observed.

The aspect ratio and all the dimensions of the new cylinders

were approximately the same as those of an elliptical cylinder,

chosen as a standard of comparison, the dimensions of which were as

follows: length 24.7 cm, width 5.48 cm, height lO cm.
The aspect ratio was 4.51".

The bases of all these cylinders are shown in Figs. 61-75.

Inside each figure I have, in most cases, written three numbers:
the one in %he middle gives the drag or resistance in mm (1 mm=

1/lO0 gram) corresponding to 100 sq. cm of projected area, reduced to

a load of 8 pounds or a velocity of 1 _sec (thousandths of these

numbers constitute practical coefficients); the second number, on the

right, gives the form factor; finally, the third, on the left, is the

reciprocal of the form factor, which I have called the drag coefficient

with respect to the drag of the projected area.

If the figure is not the same from the front and from the back,

I have noted two numbers in the middle, one above the other, the first
corresponding to a flow from the right (with respect to the drawing),
the second to a flow from the left.

The first 7 cylinders were tested at a flow velocity of 2 _sec,

the rest at 3 _sec.

209. The large, angular cylinders, which present more re-

sistance to the flow, have a drag almost proportional to the square of

the flow velocity. But the other, well-shaped cylinders show much

less respect for this law.

210. From Fig. 61 it is clear that a rectangular parallele-

piped offers less resistance than one of its faces turned into the
flow.

An experiment with model 63 showed that its resistance is al-

most the same whether the flow be from the left or the right.

*For an unambiguous investigation of the significance of shape it

would be necessary to take a body with an aspect ratio half as great.

At high aspect ratios the friction smothers, as it were, the drag
due to the inertia of the medium. - Author.
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211. The same experiment with a wedge (Fig. 65), on the other

hand, gave a huge difference; thus, the form factor is 3.187 when the

wedge moves forward and only 1.295 when it moves in the opposite di-
rection.

The next two prisms gave a fairly high form factor, up to 4.41.

I confess that I did not expect such low resistance from such a_ular

forms. But it must not be forgotten that these form factors increase

much less with increase in size and velocity than those of smooth

shapes.

Figs. 64, 65, 66, and 67.

From a comparison of the resistance of an elliptical cylinder

(Fig. 68) with that of the models that follow it, I found that this

elliptical shape is far from being the best.

Thus, even a cylinder with a base bounded by simple arcs of a

circle (Fig. 69) gives a form factor of 5.89, whereas, under the

same conditions, an elliptical cylinder gives only 4.83. If we take

a shape (Fig, 70) halfway between the shapes of Figs. 68 and 69, i.e.,

if we leave the front elliptical and form the rear edge with two arcs
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of a circle (Fig. 70), we get an average form factor, namely 5.43.

But if this shape is reversed in relation to the direction of the

flow, we find that the form factor falls to 4.94.

213. The shape shown in Fig. 71, bounded in front by arcs of

smaller radius than the shape in Fig. 70, gave a marked increase in

the form factor, as might have been expected.

Fig. 68 _0_

Figs. 68, 69, and 70.

On the other hand, when the model was reversed_ the form factor

fell sharply to 5.08.

A smooth shape, consisting of two semi-ellipses with different

aspect ratios (Fig. 72)_ did not give a particularly low resistance.

The form factor was 5.18, or 4.52 when the shape was reversed with the

thinner part in front.

214. The cylinder shown in Fig. 73 gave a form factor of 5.82,

which fell to only 4.31 when the model was placed tail first in the flow.
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A better performance was given by the shapes in Figs. 74 and
75, which had the sameform factor -- 5.94. This is the highest form
factor obtained in my experiments on cylinders, at a flow velocity of
3 m/sec. With their tail ends to the flow the sameshapes gave the
following form factors: the first, with an elliptical head, 4.45;
the second, with an angular nose, 4.88.

219. I consider it useful to bring together all my data on
various right cylinders and prisms in the form of a single table
(cf. Figs. 61-75).

Figs. 71, 72, and 73.

220. It is interesting to comparethese figures with data on
the resistance of water to flat-bottomed river vessels, which may
also be regarded as right cylinders with a curved base, though com-
paratively very low.

The drag coefficient for well-designed river boats is taken as
between 0.16 and 0.20. If, as proposed by Dubois and Duchmin, we
take a coefficient of 1.43 for a flat plate moving in a direction per-
pendicular to its plane, the form factor of the better river boats
will vary between 9.0 and 7.15. The average form factor is about8.1,
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which is not so far off the 5.94 of the best of my shapes (Figs. 74

and 75) at a velocity of 3 m/sec. At a velocity of 4 _sec the form

factor even approaches 7-

The form factor for better designed river boats is taken be-

tween 6.8 and 5.3, i.e., on the average 6, which is quite close to my

experimental values.

Fig. 74 ______ _'_j,.-,/

/

?_e _ Je/,..-

Fig. 75

.; ;,,y, .... ,,....... ,,, z,:-'
& ." fa, _ ,'if,it#,, ,,, _,+, ,,i'_¢_._t,_l,, " d_ ,

.',,,<..,-:0,,... ,,', z".,,,/.-

Figs. 74 and 75.

I am surprised at the similarity between these two different

elements. The size of the models is different, it is true, and this

should have some effect on the form factor. Actually, I expected

large vessels to have a much smaller drag than any assumed in practice;

the difference proved to be quite small, and what is more in favor of

the large models (ships).

222. I also tested large segments of a right circular cylinder.

II
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I took a cylinder with a height equal to the diameter of the

base (lO cm) and cut it in two with a plane passing through the axis.
One half, the shape of a short trough, was bounded by two semicircular

faces; the other did not have plane faces, but a semicircular dia-

phragm was glued to the middle of the cylindrical surface. These

cylinders were arranged with the opening facing into the flow, then

reversed, and finally turned sideways. The experiments were per-

formed at a velocity of 1 _sec.

223. The results are shown below in mm per lO0 sq. cm of the

projected area of the shape.

i. Hemicylinder with
two bases

1 Hemicylinder with
semicircular dia-

phragm at center

Concave side
into flow

91.68

95.08

Convex side
into flow

38.64

46.84

End face
into flow

48.71

58.61

It is clear that the resistance of the hemicylinder with the

central diaphragm is greater, other things being equal, than that of

the hemicylinder with the semicircular bases, the difference amounting

to 20%.

225. A uniformly curved surface is also part of the surface of

a right circular cylinder.
I investigated the resistance of these uniformly (but slightly)

curved plates (i.e., plates with a constant radius of curvature).
I took 4 identical tin squares (thickness of tin 0.3 mm) and

bent them to different radii.

226. The characteristics of these bent squares, each of which

before bending had sides lO cm long, are given in the table below. To

this same table, for the sake of completeness, I have added a hemi-

II
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cylinder with two bases (cf. 222 and 223).
The last column but one shows the ratio of the chord to the

altitude of the curve, the last column the reciprocal of this ratio

or the degree of bending of the plate.

No.

i

2

3

k

5

Chord in n_n

99.3

Altitude in mm

3.1

Ratios

Chord

Altitude

32.o3

Altitude

Chord

0.031

98.0

96.0

92.3

I02.5

8.4

12.5

16.0

5o.5

11.67

7.67

5.77

2.48

0.086

0. 130

0.173

o. 493

227. I performed experiments on these cylindrical surfaces
exactly like those I performed on rectangular and square plates ar-

ranged at an angle to the flow.

However_ the pressures I obtained have not been converted to
pressures normal to the plates or the chords of the curved surfaces.

If the measuring apparatus is set up as usual, parallel to the

flow, the motion of the plate and the floating tank will also be

parallel to the flow or into the wind. In this case, by rotating the

chord of the plate at different angles to the flow, I could determine
the resistance of a cylindrical surface inclined to the direction of

the wind itself.

Assuming that the cylindrical surfaces are the wings of a bird

or an airplane_ with the aid of my experiments, and with the measuring

apparatus in the lengthwise position, I could determine the thrust
needed to move an isolated wing in, say, the horizontal direction.

228. On the other hand, by arranging the measuring apparatus

normal to the flow_ I could measure the component of the wind pres-
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sure in a direction perpendicular to the flow. Applying this to the

wings of a bird flying horizontally_ I could find the vertical com-

ponent of the force exerted by the counterflow_ that is_ the lift
force.

229. The plates were rotated about their vertical axes(as
the flat ones had been previously) and exposed to a flow of I m/sec.

For the sake of comparison_ I have included in the table the

data for a flat plate (!0 × i0 sq. cm) and determined the value of the

required thrust and of the lift force developed (see section 236).

230. It is interesting to note that a lift force (see table
in section 226) is generated even when the chord of the normal sec-

tion of the cylindrical surface coincides with the direction of flow

(see table, angle of inclination 0°). This is nothing new, since

Lilienthal deduced the same thing from his own experiments, which
he performed on a single curved surface (similar to my No. 2), which

he found most suitable for an airplane and which, in fact, my experi-
ments_ too_ revealed to be "optimal_ since it generates the greatest

lift at angles up to 30 °.

z
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t p 4
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Fig. 79.
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231. Before drawing further conclusions from the table, I

shall present some curves showing the variation of the lift force

(Fig. 79) and the frontal drag (Fig. 80) as a function of the angle
of inclination of the chord to the direction of flow.

Fig. 8o.

The abscissas represent the angle of inclination of the plate

to the flow, the ordinates the frontal drag and the lift force at a

velocity of i m/sec. The y-axis is the same for all the curves; the
x-axis varies and is denoted by the corresponding number of the plate

(cf. table in section 226).

The lower_ unnumbered curve relates to a flat plate, the

uppermost to the most highly curved surface, namely a hemicylinder.
At zero inclination all the surfaces develop a lift force

(Fig. 79)_ except the flat plate and the hemicylinder; the latter

even_ as it were, develops a negative lift force. In any case the
lift force is close to zero.
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From Fig. 79 it is clear that the lift force quickly increases

with increase in the angle of inclination to 30-40 °, and then falls,

rather less quickly, reaching zero at 90 °.

0nly the hemicylinder develops hardly any lift force up to I0 ° .

233. If we continue curves I, 2, 3 and 4 on the lefthand side,

we see that the lift force does not vanish even at a certain small

negative angle of inclination, i.e., in relation to the wings of a

bird we may say that the front edge of the wings may even be dropped

slightly in relation to the rear edge_ yet a certain positive lift

force will still be developed.

235. The curves of frontal drag for the wing (Fig. 80) show

a slight irregularity at 50°; I would not have accepted this, that

is, I would not have accepted the results of my experiments, if I

had not noted the same irregularity (an unexpected depression) in

all the curves: Nos. Ij 2, 3, 4, and 5. Only the curve for a flat

plate is without it.

236. By measuring the ordinates of all the curves in Figs.

79, 80 and 81, we get the most probable value of the forces acting

on wings arranged in various positions in relation to the wind.

The proposed table (see below) contains 6 horizontal bands,

each of which has three rows of figures. The first band relates to a

flat plate, the remainder to cylindrical surfaces Nos. i, 2_ 3, 4,

and 5_ in that order.

The first row in each band gives the lift coefficient K , the
V

second the frontal drag coefficient Kf, and the third the lift force

corresponding to unit drag, i.e., the last row in each band expresses

the quality of the wing.

The row of figures at the bottom of the table gives the lift

force for wing No. 2 with the convex side turned into the wind.

237. Let us concentrate our attention on the third row of

figures in each band_ i.e., on the relative lift force or the lift

force corresponding to unit thrust.

It should be borne in mind that all the plates have the same

velocity of i _/sec and all (except No. 5) have the same area (I00 sq.

cm). We see that for all the surfaces the relative lift force in-

creases with increase in the angle of inclination only up to a certain

point; beyond this it begins to decrease again. Thus, for a flat plate

the most favorable angle of inclination to the flow is close to I0 °

(i.e., the angle at which unit thrust of the engine gives the greatest

lift); for cylindrical surfaces Nos. 2 and I this angle is not far off
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I0°; for No. 3 it is equal to 15°; for No. 4 it lies between l0 and

25°; and, finally, for No. 5 the maximum corresponds to 25 °. Hence

we conclude that, in general, it increases with increase in the
curvature of the surface.

Fig. 82 shows the curves of variation of the lift force as a

function of the angle of inclination. For a flat plate the maximum

corresponds to an angle close to 9°$ for Nos. 1 and 2 it is close to
10°_ for No. 3 to 15°.

Figs. 81, 82, and 821.

238. At the most favorable angle of inclination, the relative

lift force for a flat plate is 3-55, and for the other surfaces (Nos.

1-5 in that order) it is 3.57, 4.05, 2.52, and 2.33.

An examination of this series of maxima (236) shows that it has

its own maximum, namely for a curvature close to _12 or surface No.
2, which coincides with Lilienthal's view on the optimum curvature.

At the optimum angle of inclination and a velocity of 1 m/sec,

the flat plate develops an absolute lift force of 19.5, while surface
No. 2 (236) develops 40.5, i.e., more than twice as much, and there-

fore has the same effect as a flat wing with an area more than twice
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as great.

In insects the weight of the wings is a negligible part of the

weight of the body as a whole and therefore they do not overburden
the creature. Here nature refrains from complicating matters and

uses the simplest form of wing (mainly flat), since a two- or three-

fold increase in the weight of the wings means little to a small in-

sect. At a higher level of creation, economy in the weight of the

wings is extremely important, since the weight of the wings of heavy

birds, for example, is quite a large proportion of their total weight.

Here, too, nature follows the wiser course by making the wings curved

and thus reducing their weight and surface area. However, even in

insects the wing sheaths are curved, possibly for better shielding

and protection.

Apart from these considerations, it is possible that very
small surfaces do not obey the same laws as large ones (as in birds).

239. Instead of dividing the lift force on the wing by the

thrust needed to move it at a speed of l m/sec, we can do the op-

posite and get the work done by the engine in unit time or, more

accurately, the work done by a wing moving horizontally at a speed

of l_sec referred to unit lift force. In general, the results

obtained may be regarded as the work factor for the flight of a

flying machine.
Having presented the table thus obtained (see below), I shall

demonstrate its application, and the application of the other co-

efficients.

240. If we have a curved plate, the forces acting on it are

expressed in practical units by the figures of the table in section

(236) divided by lO00.
Thus, for example, expressed in kilograms, the forces acting

on a square meter of the surface of wing No. 2 moving at a speed of

1 _sec at an angle of inclination of lO ° are:

I. in the direction of motion -- 0.010;

2. in a direction perpendicular to the direction of motion of

the plate -- 0.0405.

Let us denote the lift coefficient by Kv, and the thrust co-
w

efficient by K_; then the work factor will be equal to "-f (see previ-
K
V

ous t_b!e, where the work factors were computed).

241. If the area of the wing is equal to S and the velocity
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to V, in general, the lift force P on the wing will be:

P=K "S'V 2 .
V

242. The frontal drag or thrust Q developed by a screw pro-

peller is

Q=Kv P=K t P,

where P is the lift force and, at the same time_ the weight of the

airplane plus load and passengers.

243. The thrust T per unit of time will be

T= Kt. P- V.

244. From equation 241 we find

now, eliminating V from equation 243, we get
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rm

In these simple equations, based exclusively on experiment,

there is_ of course_ no allowance for the drag on the fuselage and

parts of the airplane other than the wings _3.

245. Assuming that one of the quantities on the right hand

side of the last equation is varies_ while the others remain the same,

we may say:

I. The work done by the engine per second must be proportional

to the weight of the airplane (with all its contents) to the power

3/2, i.e., proportional to p3/2

P
2. When the ratio _- is invariable, i.e., when the area of

the wings S increases in the same proportion as the weight of the

airplane P_ the work T done by the engine remains proportional to the

weight of the airplane P.

3- The work T is inversely proportional to the square root of

the area of the wings S or (assuming square wings) inversely pro-

portional to their linear dimensions.

4. The work T is proportional to the work factor Kt, i.e._ to
the figures in table (239).

Hence, in order to reduce the expenditure of energy, it is

necessary to choose a curvature close to that of surface No. 2.

5. The work T is inversely proportional to the square root of

the lift coefficient K • Thus, in order to reduce the work to a
v

minimum_ it is necessary to take the largest lift coefficient from

table (236).

6. The greater the lift coefficient K the smaller can be the
V

area of the wings S without detriment to the work T.

7. From the above and directly from equation 244 it is clear

that the work T is proportional to the fraction Kt: _v or since

Kf K

K t = _-, the work is proportional to __2_f.v
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If there were a mathematical relation between Kf and Kv, it

might be possible to find the most favorable ratio of these coeffi-
cients.

Kt
246. In order to seek a minimum of _, we must take the

figures for wing No. 2 and seek particular values of ---_.

We then get the above figures for different angles of inclina-

tion of wing No. 2.

247. From this table we see that the minimum of _, and
I "

hence the minimum of the work T done by the engine, corresponds to an

inclination of 12.5 °. This is also the optimum angle of inclination
of the chord of a curved plate to the direction of the relative air

flow.

248. Other investigators have arrived at other conclusions

concerning the optimum angle of inclination.

Thus, Dzhevetskiy, basing himself on the work of Duchmin and
Froude on the resistance of water, gave by analogy 1° 50' as the

optimum angle for air, a value very different from mine. The same
result was reached by Fedorov(1-2°), who based his conclusions on
the latest data on the resistance of air.

Professor Zhukovskiy, however, using Lilienthal's data, finds

a value of 15°.

In analyzing this article, Fedorov presents his own calcula-

tions, on the basis of which he also finds the optimum angle to be

12-15 °. Shirman gives 7° for the same angle.

However, from table 246 it is clear that between 7.5 ° and 20 °
K

the ratio t varies only slightly (by 16 percent)_ and therefore at

different inclinations within these limits the same value of T is re-

quired for flying, so that almost all the above investigators are

close to the truth.

For high speeds and large surfaces, however, my result is only

approximately applicable. In this case, according to the laws of
friction (see '_ir Pressure") the optimum angle must be less than

12.5 °. The optimum curvature will probably be less, too.

i
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249. If it is advantageous to give the wings of an airplane a

certain curvature, then obviously it must be equally advantageous to

do the same for the propellers. Thus, I can not agree with the

opinion of Hiram Maxim, though based on experiment, that flat pro-
pellers are the most favorable.

251. Though some of my conclusions relating to plates are in

agreement with those of Lilienthal, the same can not be said in connec-

tion with the lift force acting on the wings.
For the forces acting on a curved plate of optimum shape

(1/12), Lilienthal gives two equations:

and

N = _. 0.13- S. V2

T= _.o.13.s.v 2.

One is for the component normal to the plate, the other gives

the component acting parallel to the chord of a normal section of the

plate.

In other words, one component is perpendicular to the chord,

and the other is parallel to it; _ and _ are coefficients the value of

which depends on the angle of inclination of the plate to the flow.

At an angle of 90°3 _ = l, i.e., the normal component is equal to N =

2
= 0.13. S • V . Even from this it is clear that Lilienthal's formula

for the wind pressure employs an obsolete and, as we have shown, ex-
tremely unreliable coefficient.

In order to avoid this, let us take the normal force at an

angle of inclination of 90 ° as unity. Then the normal force acting

on the plate at other angles of inclination, in accordance with

Lilienthal's and my own experiments, will be as shown in the table.

At acute angles, such as I have given here, the forces normal

to the plate differ only slightly from the lift forces I have Calcu-

lated myself (third row); see table 236, from which the values given
in the last row of this table have been taken.

Actually, Lilienthal has another component _, but this, being

relatively small at all angles, has little effect on the results
tabulated. The table also shows that 3 according to Lilienthal, the

lift force on the wings starts to develop at - 9°3 whereas according



248

to my observations it starts at - 4 or - 5°, so that at an angle of

0° my lift force is half as great as his, and in general tends to re-

main the smaller of the two.

Angle -9 °

Lilienthal 0

My experi-
ments

_4° oo 5o lOo 15° 2o° e5° 3o°

0.200 o.381 0.650 0.825 0.9Ol 0.922 0.922 o.91o

o o.186 o.342 o.513 0.7Ol o.89o I.O25 1.o95

90 °

However, this difference becomes the less the greater the

angle; starting from 20 ° the difference is quite small. Subsequently,

my lift force becomes slightly greater than Lilienthal's.

As far as the absolute magnitude of the lift force is concerned,

according to my experiments, apart from these corrections_ it is al-

most twice as small, since Lilienthal uses an obsolete coefficient for

the force acting on a flat plate normal to the flow (0.13. S. V2).

253. Equation (244) and table (246) give the thrust for the

flight of an airplane (useful work); of course s the propeller, the

drag of the fuselage_ etc._ must add to this work.

On the other hand s however, we see that a fivefold increase in

the aspect ratio, in a direction transverse to the flow, can almost

double the force acting on the wing s without it being necessary to in-
crease the area.

If this conclusion holds true for curved plates, as it does for

flat ones, the lift coefficient K must be increased in equation (244),
v

while the values in the last row of table (246) must be reduced.

Kt
The constant multiplier in equation (244) is equal to -- or

Ijlii
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T = 0.316. P. _,

and according to Lilienthal:

T = 0.408. P-_.

I would find this relatively astonishing resemblance between

the results more understandable_ if the above-mentioned scientists

had taken into account the aspect ratio of the wings and made the

same assumptions as myself; in fact, Lilienthal, for example, took

the coefficient for the force acting on a flat plate as 0.13 instead

of 0.071, as I did_ in accordance with Cailletet and Colardo.

259. According to Renard, for flat wings T = 0.932" P- _.

In order to compare this formula with my results, we must

compile a table for a flat square wing similar to table (246) for

cylindrical surface No. 2.

From this it is clear that the minimumwork T corresponds to

an angle of inclination of the plate to the horizontal of 12.5 °, i.e.,

the same angle as for the optimum curved surface (No. 2).

260. In practical units, in accordance with section 255, the

coefficient in the equation for T will be /1000 times greater than

the value given in this table (0.0600), i.e._ it will be 1.8974.

This figure is double Renard's.

For an elongated wing_ my coefficient (1.9) -- see section

253 -- must be reduced by 2 _times_ i.e., by 2.83 times; it will

then become 0.6705, which again is not quite in agreement with Renard's

coefficient.

This difference is probably attributable, among other things,

to the fact that Renard used less elongated wings in his experiments.

In general, it would appear that investigators are still little con-

cerned about the aspect ratio of the wings.

i
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equation (255) and the above data, we find: T = 4658 kilogrammeters

per second or about 62 horsepower. If we allow for the propeller,

the drag of the fuselage and other factors, this figure must be
tripled.

Actually, for steamships the comparable figure is multiplied

(according to Froude) by 2.7; we shall triple it, since we must also

bear in mind the drag of the fuselage and the wing braces. We then

get an ideally small figure for the work done in flying, or 186

indicated horsepower.

With Maxim's machine the corresponding figure is 363 horse-

power or twice as much; and even then the results are doubtful.

256. For Langley's "Aerodrome" P = 13.6 kg and S = 8 m2.

Thus_ according to my formula, tripling the figure obtained,

we get 3T = 23.9" 3 = 69.6 kilogram_eters per second, which is quite

close to the actual figure for "Aerodromes" namely, 86.4 kilogram-
meters per second (according to Shirman's calculations; see "Vozduk-

hoplavaniye_" No. 4_ p. 78).

257. Ader's "Avion" had a wing area of not more than 50 m2

and a loaded weight of 500 kg. In this case, for "Avion" we find
3T = 1464. 3 = 4392 kilogrammeters per second or about 58 indicated

horsepower. In factj it developed about 40 nominal horsepower. Thus,

if it had got off the ground with these 40 horsepower, it would have

been a miracle of technical efficiency.

258. There is no hanm in comparing my formulas with similar

ones derived by Shirman ("Vozdukhoplavaniye," No. 4) on the basis of

the investigations of Welner 3 Lilienthal and Renard.

Earlier (255), I have, for ideal wings*, the thrust formula:

T = 0.414- P. _.

According to Welner:

*My subsequent experiments showed that cylindrical wings with a con-

stant curvature are not ideal. - Author.
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• For the optimum elongated wing, in the best case, we can

 .457
double the lift coefficient K ._ whence the coefficient in equation

(2_) is reduced by 2 _ or 2.83 times, i.e., becomes 0.0131.

254. Hence the formula for the optimal minimal work done by

an airplane with fixed wings attached to the fuselage will be

T = 0.O131 0.0131- P

f

Owing to the effect of the propeller, the drag of the fuselage

and its parts, etc., this computed value should be at least tripled•

255. In practical units the coefficient in the latter formula

will not be 0.0131. In order to find it, we must turn to table (246);

does not change, but _v (see 236)must be made equal not to J_8.5Kt

but to J0.0485, since for conversion to practical units Kv must be

divided by I000. Thus, the practical coefficient in equation (254)

will be I000 times greater, namely, 0.414, and the equation will

assume the form

: o.414. P. _.

How far our present airplanes are from satisfying this equation

can be seen from the data and computations relating to flying machines.

2

Thus, for Maxim's airplane P = 3600 kg and S = 370 m (see

"Vozdukhoplavaniye," editor M. M. Pomortsev, No. 4, p. 80). Using
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261. As I have already pointed out, there is no need to imagine

that the optimum inclination of the wings to the flow is something

fixed. On the contrary, on the basis of my past ("Air Pressure") and

present experiments_ with increase in the velocity of the flow or the

plate_ as well as with increase in its surface area_ the coefficient

of friction diminishes, and at the same time the optimum angle must
diminish also.

262. In the presence of very large surface areas and high

velocities we can be guided by the formula (154-155)

F = K. i. S. V2_

which I gave for small angles of inclination in relation to a rec-

tangular plate arranged transverse to the flow (long side of rectangle

perpendicular to direction of flow). Here the friction is almost

completely eliminated.

The formula gives the force normal to the plate; the thrust

coefficient or horizontal component is equal to

Kf = K. i- sin i_

where K is a coefficient depending on the aspect ratio of the rec-

tangle (154-155), and i is the angle of inclination of the plate to

the flow; the lift coefficient or vertical component is equal to

K = K. i. cos i.
v

Hence

Kf sin i
K ..... tani
t K cos i

V
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and

Et tan i
m

jKicosl

Cylindrical surface

_ig. 85.

Thus, this function or work factor (246) decreases continuously

with decrease in the angle of inclination i. Actually, in view of the

smallness of the angle i, it is possible to put tan i = i, cos i = l;

hence, _K_ = _ i.e., the work factor is a minimum when i = O.

_ v

Hence in the limit_ in the absence of friction and drag, we see

that the optimum angle of inclination for an airplane (with flat

wings) is equal to zero. In this case, the wings assume an horizontal

rI i:

i
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position_ and the work done by the airplane diminishes to zero.

First of all, however, there are various kinds of drag and

friction which are quite impossible to avoid; secondly, are we justi-

fied in applying the formula for the normal force

2
F=K. ioS.V

at any_ including the smallest_ angle?
The extreme limit of experimental application is 2-5°; below

this value_ as already noted, the pressure falls sharply compared with

the value predicted by my formula and those of others, apart from

Newton's_ which, in this case, may have a certain validity.

Similarly, the optimum curvature of cylindrical wings is

scarcely something independent of the size of the wings or the speed

at which they move. It is very probable that with increase in the

speed and surface area of the wings this curvature, like the optimum

angle of inclination_ may diminish_ and perhaps the work T may di-

minish at the same time.

267. Upon determining for an inclination of chord to flow of

90 ° the forces acting on cylindrical surfaces arranged now with the

convex, now with the concave side turned into the flow (Fig. 85), we

can compile a table (see above) showing the forces corresponding to

i00 sq. cm of projected area at a flow velocity of I _sec.
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CONTINUATION OF REPORT ON EXPERIMENTS ON THE RESISTANCE

OF AIR PERFORMED IN 1901 AND 1902 DNDER THE AUSPICES

OF THE IMPERIAL ACADEMY OF SCIENCES*

273. I performed experiments on air friction with the aid of

circular cylindrical surfaces_ made either out of shiny white tin 1/3

mm thick or drawing (ivory) paper of approximately the same thickness

(1/3 mm). The perimeter of the base of all these cylinders was the

same, namely, 50 cm.

The height of the hollow cylinders varied; for the tin cylin-

ders with soldered wire legs it was as follows: 2, 3, 4_ 5_ 7, and I0

cm; the heights of the cylinders made of best ivory paper were: i0,

15, 20, 30, 40, 50, 60, 70, and I00 cm. Altogether there were 15

models. Models up to 15 cm long were mounted on one leg; the longer

models on two. The two cylinders i0 cm long -- one of tin and one of

paper -- were used to compare the friction at surfaces in different

states. The difference proved to be in favor of the tin_ but was

only small. At high flow velocities the paper models i0 and 15 cm

long proved unsuitable, owing to excessive buckling, since they were

light, weak_ and attached at only one point. Accordingly_ they have

been omitted from the following tables..

274. The legs of all the cylinders were made of round wire

1.38 mm thick. The tin cylinders had short legs (10.5 cm long), be-

cause they were soldered to the bottom of a hoop; the legs of the

paper cylinders were 26 cm long_ because they passed right through

the cylinders from top to bottom. During the experiments_ of course,

the generator or height of the cylinder was arranged parallel to the

flow. By calculation (see 175) I obtained a drag curve for the wire

and a drag table for the legs.

275. A direct experimental check on the drag of the legs

showed that the figures contained in the table were 9 percent greater

than those given by experiment. However_ taking into account the

finite thickness of the cylinders_ i.e._ a certain head resistance_

*"Continuation of Report on Experiments on the Resistance of Air .... "

was not forwarded to the Academy of Sciences and remained in Tsiol-

kovskiy's files. It is published here, in slightly abridged form,

for the first time. (Ed.)
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I left the tabulated figures as they were and deducted them from the

total drag of the cylinders.

The drag of the models was also slightly greater than the drag

due to friction because it was impossible to eliminate all vibration,

which also added to the drag.

The drag was further increased by inaccuracies in the geometry

of the cylinders.

Therefore, my values for the drag are, in any case, much higher
than the values corresponding to friction alone (see table).

276. The following table shows my figures for the drag of the

cylinders, with the drag of the supports deducted as usual.
The first row of the table gives the load in pounds, the first

column the height of the cylinder (or the length in the direction of

the flow) in centimeters, the second the sum of the inside and out-

side surface areas of each cylinder in square centimeters.

277. From the table we see that the height or generator of

the cylinders varied between 2 cm and 1 meter, and the friction sur-

face between 200 and lO,OO0 sq. cm or 1 sq. meter.

Taking any row of the table, we see that the friction for any

area (same model) increases less rapidly than the load, i.e., the

friction is not proportional to the square of the flow velocity, but

x
proportional to V , where x is a variable less than two. Thus, from
the second row it is clear that when the load increases by ll times

(from lO to llO pounds), the drag increases by less than 5 times.

However, this increase becomes more and more proportional to
the square of the flow velocity as the length of the cylinder in-

creases. Thus, at a load ratio of lO (from the second to the eleventh
column of the table) for the different cylinders (13 models) we get

the following drag ratios: 4.7, 4.5, 4.8, 5.0, 5.2, 4.7, 7.0, 7.2,

7.5, 7-7, 7.6_ 7.6, and 7.4*.
In general, there is an undoubted increase in the ratio with

increase in the dimensions of the cylinder, the ratio approaching a

certain limit, probably lO (since this is the load ratio). It may be
assumed that if the length of the surface were very great (theoreti-

cally, infinite), the friction would be proportional to the square of
the flow velocity. The departure from this law is the greater the

*The jump between 4.7 and 7 is due partly to the fact that the length
of the cylinder suddenly doubles (see table 276).
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less the length of the cylinder in the direction of the flow. Hence,

x will be less than two and tend closer to unity the shorter the

length of the surface.

Fig. 89

Fig. 88

Figs. 88 and 89.

278. Now let us examine the vertical columns of the table or

the increase in friction with increase in length at a given flow

velocity.

The length of the cylinder and the area of the friction sur-

face increase by 50 times; however, the friction is far from 50 times

as great, the multiplier varying with the flow velocity.

Thus, for various loads from I0 to 130 pounds (between the

second and last rows of the table), we get the following ratios (read-

ing from left to right)_ as the height of the cylinder increases by

50 times: 10.4, 11.4, 12.6, 14.7, 16.0, 16.0, 16.3, 15.4, 14.9, 16.3,

16.8, 17.2, and 17.6.

Hence it is clear that at any flow velocity the drag due to

friction increases much more slowly than the area of the friction

surface or the length of the surface in the direction of the flow,

namely, 5-3 times more slowly.

At first, at smaller loads, the ratio increases rather quickly,

then it begins to fluctuate and, in general, increases very slowly.

Whether the ratio reaches 50, i.e., the ratio of the surfaces (or

lengths), at any flow velocity is uncertain, but possible.

Thus, at a given flow velocity, the friction is proportional

to ty, where _ is the length of the cylinder, and y is an exponent
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less than unity and differing the more from unity the less the ve-
locity of the flow.

279. Each row of table (276) corresponds to a curve expres-

sing the friction as a function of the flow velocity. The abscissas

give the load in pounds, the ordinates give the friction in milli-

meters. Thusj we obtain Figs. 88, 89, 90, 91, 92, 93, 94 and 95.
Starting from a length of 40 can, the absolute value of the friction

for the cylinders is extremely large and accordingly is expressed not

in whole millimeters but in fractions of millimeters. As compared

with the previous figure s the scale of Figs. 96, 97,98, 99 and lO0

(actually_ only the ordinates) is as follows: _4, 1/5, 1/6, _7,

and _lO.

s

Fig. 9!

LO _ 60 /'o IN m

Fig. 90

:

,4-o

I : i i:,
to _ro go l_ ioo ,•

Fig. 92 _,-'

t ,lil i,,
:o Oo I: to /,,t /20

lb

Figs. 90, 91_ 92, and 93-

From these figures it is clear that the friction curve for amy

cylinder may evidently be represented by an arc of an hyperbola.

280. The majority of the curves do not change the sign of the

radius of curvature. The latter increases continuously with increase

in the abscissas or ordinates. The greater the length of the cylinder,

!
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the closer the arc of the hyperbola to a straight line, i.e., the

further the vertex of the hyperbola from the origin of the coordinates.

From the closeness of the arc to a straight line it is clear that

with long cylinders the friction is proportional to the load or the

square of the flow velocity, a conclusion that we have already reached

elsewhere (see section 277) _4.

Fig. lOG

B

8 I6 _ li /P _ #0 Ib "

Fig. 98 . _ .... Fig. 99 " _

Figs. 98, 99, and I00.

290. The law I derived in relation to friction from my

previous experiments ("Air Pressure," Nos. 88-93) is approximately

applicable within the limits of those experiments, but I cannot allow

its applicability outside the limits of the experiments (see "Air

Pressure," No. 93), since it is far from being in agreement with the

results of later experiments on longer surfaces. Let us compare the

data of these earlier experiments ("Air Pressure," No. 93) with the

more recent ones. In my original table I gave the ratio of the drag

on a flat plate in a normal flow to the drag on one side of the same

plate moving in the direction of the flow.

These are figures from the table based on my earlier experi-

ments (No. 93). For a surface I00 cm long these figures are already

theoretical.
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Length of
surface in

cm

i0

I00

Velocity in m/sec

68

160

2

90

212

4

if9

279

From the table based on my present experiments I find:

Length of
surface in

cm

i0

i00

Velocity in _sec

I.14 I.97

8O. 6 I16.5

167.3 193.0

3.95

162.5

233.7

The difference is considerable_ but in experiments of this kind

it should not reduce one to despair. In any case, the later figures

are closer to the truth_ since they are based on more numerous and

more accurate experiments.

291. The practical formula for the friction force acting on

one side of a rectangle of area S m2 at a flow velocity of V meters per

second has the form:
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?

KF = --'S" kg,
i000

where K is a coefficient selected in accordance with the velocity V

and the dimension of the rectangle in the direction of flow. For

example, for a length of i meter and a velocity of 4 m/sec, we get

F = 0.315. S. V2 kg.

I000

If S = I m2, V = 4 m/sec, then F = 0.00504 kg or about 5

grams.

292. From the results of the experiments we can plot the

curves shown in Fig. 118, which give the drag as a function of the

load (in pounds). For all the lengths tested (2 to I00 cm in the

direction of flow), these curves resemble arcs of hyperbolas, as in

the graphs expressing the drag as a function of length.

294. For this reason it occurred to me to express the friction

force as a function of the length of the plate and the load by means

of a second-order equation in three variables

2 Ax2 By2z + + + Cz + Dxy+ E = 0.

Here z is the friction (in millimeter units) on one side of a

rectangle I00 cm wide and y cm in length (in the direction of flow);

x denotes the load in pounds.

295. In order to determine the constants in equation (294),

namely, A, B, C, D, and E, I substituted five tames particular values

of x, y and z.
I thus obtained five equations with five unknowns (A, B, C, D,

and E).
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Here are the five points I took with their coordinates:

Point

Load in pounds, x

Length in direction

of flow in cm, y

Friction in millimeter

units, z

i

2O

12

2O

i00

i00

6O

4o

118

4

120

44

13o

I00

506

296. Solving these five equations, I found the following

values for the constants:

A = -i.0911; B = -0.2835; C = +1760.2; D = _5.686;

E = -Ii 376.56.

All the constants except C are negative.

297. From equation (294) I obtain:

z - - By 2 Dxy - E +
C2 C

4 2

I
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Substituting numerical values of the coefficients, I find that

<T c2all the terms under the root sign are positive C = 880.I; _ - E =

: z8 . 952).
The difference between experiment and calculations based on the

above formula is the greater the smaller x and y. For x and y greater

than I0, the formula corresponds fairly closely with experiment, but

for values of x and y smaller than I0 cm or I0 pounds, it is necessary

to take another formula and other experimental points in order to de-

termine the constants. Thus, it is possible to take the equation of

a conical surface, the vertex of which coincides with the origin of

the coordinates and which passes through the axes x and y.

The equation of this surface will be

zy + Azy + Byx = 0.

In order to determine the constants A and B, it is enough to

take two experimental points; we then find:

3 II
A = -- and B = - --,

7 7

i.e.,

z

- Byx ll-yx

y+ A 7Y+ 3£"

For loads greater than i0 pounds and a length greater than I0

cm the formula gives results in sharp disagreement with experiment and

therefore is not applicable in these circumstances.

If y = I0 and v = I0 m/sec, and at somewhat greater values of

y and vj K may be expressed approximately as:
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jl31 • 133
1239 0.0362

):vj7
0. 1239 = 0.00102.

@y

298. At a load of x pounds the wind pressure normal to a plate

I00 cm wide and y cm long will be equal (in mm units) to

0.092 × I00 X y. x = 9.2. xy = f. xy.

Accordingly, other things being equal, the coefficient of fric-
tion or the ratio of the friction force to the normal force acting on

the plate may be expressed by:

JA B D C2 -4E C
K= _ ÷ •f f2x2 f2xy 4" f2 x2y2 2fxy

305. In accordance with sections 297 and 298, the coefficient

of friction will be:

K
A/(_ B2 D_.&+ c2
v2-+ _ + Cy v4_ ¢-y'

where A2, B2, D2, C2, and E2 are also positive and constant.

306. This equation may also assume the form:

I
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jf_y2 -B -D C2 - 4E C
K = + f2g2v-----_ + + - ..f2gv2y4f2g2v 22fg y

f2 84.64, fg 71.024, f2g 653.422,Here f = 9.2, y = 7.72, = = =

f2g2 = 5075.1, so that for equation (305) we get: A2 = 0.00128913,

B 2 = 0.00005586, D2 : 0.131133, C2 : 154.868, E2 : 12.392.

307. If y is expressed in meters, equation (306) will assume
the form:

K= m1041( J 12.89_+y2 55867_ + 131133v2___- + 1548680v4y2 1239_v2y

i.e., it has a value of about _I000. According to the theory de-

rived from previous experiments ("Air Pressure," No. 93), K = 1/945.

Hence it is clear that the previous equations, though very dissimilar

in form from the newer and simpler ones, give results not very dif-

ferent from those of the present computations (at least for not very

large values of v and y).

In the last equation it is possible to discard the second term_

which is comparatively small, and we then get the even simpler formula:

0.0362
K = _

vJ-F

which is valid for medium values of v and y greater than 10. This

equation shows that, in this case, the coefficient of friction is ap-

proximately inversely proportional to the flow velocity (Hagen's law)

and inversely proportional to the square root of the length y of the
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surface in the direction of flow, i.e., the absolute friction will be
proportional to the flow velocity v and the square root of the length
of the surface y.

309. The drag of elongated solids of revolution (of the
dirigible type) is composedof two parts: I. the drag due to inertia,
and 2. the drag due to friction. Wenow know the latter and have
even formulated the coefficient of friction:

o.o362
K -

v,/5-

where it is understood that the friction is that of a rectangle or

cylinder, the length of which in the direction of flow is y meters,

while the flow velocity is v _sec. The absolute value of the fric-

tion force (in kilograms) on the outside of a circular cylinder of

diameter D and length y will be, in accordance with (43):

K'0.O71"S'v 2 = K-0.071 (w'D'y) v2 =
0.0362"0.071 2

• _.D.y-v =

= (0.0362- 0.071-w)" D- _-. v = 0.0080- 7237" D. _-y-. v.

If we imagine a hollow circular cylinder of the same length y

and the same diameter D, as the solid of revolution, the friction of

the cylinder will not be as many times greater than the friction of

the solid as the area of the cylinder is greater than the area of the

solid. Here it is necessary to introduce (into the above formula) a

special correction factor.

310. In order to determine this factor, I performed a series

of experiments on the friction of plane surfaces bounded by arcs of

I
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circles (Fig. 119).

Fig. l19a.

There follows a table of these surfaces which were easily bent

so that they formed_ as it were, a part of the previous experimental

cylinders.

311. These surfaces were arranged as usual in the central

part of the flow and in the same direction. The supports used were

the same as for the cylinders 26 cm long.

312. Deducting the drag of the supports_ I obtained the follow-

ing value for the surface corresponding to I00 cm of the perimeter or

double width of the surface (I assume that the friction is proportional

to the width of the surface).

313. Assuming that the increase in friction is proportional to

the increase in the length of the rectangle (for a small increase the

error is negligible)_ I determined the friction of the rectangles for
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a constant double width of I00 cm and a variable length (in accordance

with table 310).

Now, having compared the friction of a tapered surface with

that of a rectangle of the sam@ length and width, I got the following
ratios (see table on p. 277).

314. From the table we see that, in general, this coefficient

is less than unity, which is understandable since the area of the

curvilinear figure is less than that of the rectangle. For a circle
the conclusions are doubtful: the coefficient is too large, but

this is due partly to the high drag of its 1-mm thick edges. The

drag of theseedges and their different inclination to the flow may

perhaps also account for the small difference between the coefficients

for the figures with different aspect ratios. Excluding the circle

and taking their averse value, these coefficients will be:

Aspect ratio: 1.58 2.46 2.97 3-57 4.40

Coefficient: 0.822 0.807 0.753 0.719 0.756

I
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AIR RESISTANCE AND FLIGHT IN AIR*

In 1899 I requested funds from the Imperial Academy of Sciences

in order to carry out experiments on air resistance. In this request
I indicated my previous experiments, which had been described in

Vestnik opytnoy fiziki (also available as a separate publication:

"Pressure of Air ....") and in Trudy Moskovskogo otdelenlya Obshchestva

lyubiteleyyestestvoznanlya (Transactions of the Moscow Section,
Society of Amateurs of Natural Science).

The Academy charged Academician M. A. Rykachev with considera-

tion of my work. His favorable report and recommendation to the

Academy led the latter to provide a grant (470 rubles) for new experi-

ments, whose lines I had indicated to the Academy. This was in May

1900. I then acquired as equipment a large air blower (vaned air

blower or fan, resembling a winnowing machine), which gave a flow of

height and width one arshine (71.12 cm). Measuring instruments were

also constructed. All of this equipment was taken down and re-
assembled no less than 6 times before a satisfactory air flow was
obtained.

At the end of 1900 I could begin to make models and perform

experiments. By the end of the following year (December 16, 1901) I
had carried out some of the proposed program and submitted a progress

report to the Academy. This report represented merely extracts from

my manuscripts; it was 80 pages of text with 58 tables and drawings.

Here I deal with the most important and practical conclusions from
this work.

Neither descriptions or drawings of apparatus, nor descrip-

tions of the experiments, are given -- there is no space for this

here; for these details I refer where appropriate to my separate

publication ("Pressure of Air .... "), although the drawing of the
principal machine given there is incorrect.

At the time of my report to the Academy I had not completed
the program, and I was still far from exhausting or solving the
problems discussed in it. There is still much to do before I will

have solved the problems arising. This will probably require fresh
work with better apparatus in order to obtain more accurate results
in some cases.

Here it seems desirable to explain some of the terms I shall

use most extensively in what follows.

*First printed in Nauchnoye obozreniye (Scientific Review) No. 5, 1902.
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The elongation or aspect ratio of a body is the ratio of its

length to the diameter of its largest cross-section. By diameter is

meant here that of the circle having the area of the cross-section.

The projection of a body is the area of the projection on a plane

perpendicular to the air flow; its magnitude is, of course, dependent

on the position of the body relative to the flow.

The form factor is a number indicating by how many times the

force of wind pressure on the plane projection exceeds the resistance

of the body itself; in relation to flight in air_ this number actual-

ly represents the advantage of the body as regards ease of parting of

the air. The reciprocal of this ratio is called the resistance co-
efficient.

All values and data relate to air of density 0.0012 of the

density of water.

The quantity K in

K V2P= ---S- ,
i000

is a coefficient giving the pressure force P in kg on any surface.

Here S is usually (not always) the projection of the body and

is always expressed in square meters; V is the speed of the air flow

and is always in meters per second; and K is a variable dependent on

S and V_ which has to be found by experiment and which is given in

the tables below.

The aspect ratio of a rectangle is the ratio of its dimension

along the flow to its dimension along a direction normal to the flow.

Sometimes it is simply the ratio of the length to the width.

Plane Fisures: Wind Normal to Figure

I. The wind forces on unelongated equal figures (ones

having the same area) without holes are equal.

For instance_ the forces from a wind of a given speed on a

circle and on the square of the same area are equal.

2. The forces from a wind of a given speed on elongated

figures of a given area (rectangle, ellipse) and on ones with holes
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(ring, lattice) are larger than those on continuous and unelongated

bodies (see i). The difference in the forces for a given area and

w_nd speed may be as much as 40%.

This explains the good effects of sails with holes.

3. The wind forces on geometrically similar figures are

proportional to the area and to the square of the flow speed. This

law is followed, for example, by squares, circles, ellipses of fixed

axial ratio; and rectangles with a fixed ratio of the sides or a

fixed elongation.

Aspect ratio

of rectangle

i

1.5

2

3

4

5

7

K

73

74

76.5

80.5

83.5

85.5

87

89

Aspect ratio

of rectangle

8

9

I0

II

12

13

14

15

K

9O

91

92

92.8

93.5

94. I

94.7

95.2

Aspect ratio

of rectangle

16

17

z8

19

2O

3O

4o

5o

K

95.7

96. i

96.5

96.9

97.2

98.4

99.4

i00. i



282

4. A practical formula for the force on a figure subject
to geometrically similar variation is

p = --K S "V2j
lO00

in which P is in kg, K is a constant to be determined from experi-

ment, which is constant for a given shape and air density, S is
area in square meters, and V is wind speed in meters per second.

5- For figures without holes and unelongated (see i) I

have taken K as 73 for air densities close to 0.0012 of the density

of water, which is almost exactly Cailletet and Colardo's value.

6. The force on a rectangle of fixed area from a wind of

fixed speed increases with the aspect ratio; K in the above formula

thus increases with the aspect ratio. The above table gives the re-

lation of K to aspect ratio as found by experiment.

This relation I have plotted as a curve, with K as ordinate

and the aspect ratio as abscissa. This curve gives K for any
aspect ratio.

The curve and table show that the force on a square is al-
most exactly that on a rectangle of small elongation (for a fixed

area and wind speed) up to aspect ratio of 1.3; then the force in-

creases with the aspect ratio, at first fairly rapidly, but then more

slowly as the limit is approached, at which the force exceeds that
on the square by 40%.

7. The formula of (4) may be used to determine the force

on a rectangle by taking the coefficient corresponding to the aspect
ratio from the table or the curve. I think that this formula is

also applicable to an ellipse.

Normal Pressure on a Rectangular Plate Inclined to an Air Flow

8. The resultant of all the wind forces on an inclined

plate is almost normal to the latter; this is the force I envisage,
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and I therefore call it the normal-pressure force.

9. The force on a rectangle or other figure having a fixed

position (perhaps inclined) relative to the flow is proportional to

the square of the flow speed.

lO. The wind force on a rectangle _lncluding a square)

having one of its sides (the long or the short one, not equivalent)

perpendicular to the flow is given in the following table for unit

area and for a flow speed of one meter per second. The numbers also

represent the K of formula (4), which is thus suitable for the de-

termination of the force on an inclined square or rectangle.

ll. If the angle of inclination is 90 °, the K to be used
in (4) are best taken from (6).

12. With the angle as abscissa and K as ordinate, the
force can be expressed in relation to the angle as a curve for any

given elongation. The table gives the aspect ratio as negative when

the short side is perpendicular to the flow, and as positive when the
long side is normal to the flow. This curve enables one to find the

pressure corresponding to any inclination.

13. Aspect ratios from -5 to +5 may be taken as abscissa
to obtain curves each one representing the relation of aspect ratio
to force for a fixed inclination.

14. These curves all represent sections of a surface whose

equation is z = F(x_y), which I cannot determine until more exact ex-

periments are done with improved apparatus. This equation shows that
the force z or coefficient K is a function of the inclination x and

aspect ratio y of the plate.

15. The columns in the table show that K increases con-

tinuously for aspect ratios from -5 to +5 for any given inclination up

to 25°; for instance, an aspect ratio of 5 together with an inclination

of lO° would imply a force on one side of the plate with its long side

perpendicular to the flow that is 5 times the force when the short

side is perpendicular to it.

16. The table also shows that the difference of the K in

such a case is the larger the smaller the inclination to the flow

and the less the elongation of the plate.

17. Langley and others have shown that the force on a plate

of fixed inclination is dependent on the plate's disposition in the
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flow; but they have found no exact relationship and have not ex-

pressed it in tables or curves.

They also did not know the relation of K for an elongated

plate to the aspect ratio_ which is expressed by my table 6.

Usually (and perhaps even always, so far as I know), only the

area of the plate and the inclination to the flow have been used in

calculations; the significance of the elongation has been ignored as

being an unknown but important factor [25].

18. The curves constructed from the table of (i0) show

that the force on a rectangular wing having its long side perpendicu-

lar to the flow direction is expressed by the simple formula

K 2
P = _ iSv-,

I000

provided that the inclination of the wing to the wind does not ex-

ceed 10-15 ° . Here i is the angle of inclination in degrees, P is

the pressure in kilograms, S is the area in square meters, v is the

flow velocity in meters per second_ and K is a coefficient_ whose

value for rectangular plates of various aspect ratios is expressed

by the following table.

19. The above shows why the flat wings of insects have

their long sides perpendicular to the head-on air flow (or flight

direction).

20. The last formula is applicable to calculations on the

flight of insects of aeroplanes whose flat wings are inclined to the

flow at not more than 15 ° .

By v we may understand not only the speed of the wind but

also the speed of the plate in stationary air (more precisely, a

stagnant atmosphere); it can mean both at once_ namely the relative

velocity between model and air. This remark applies also to all

other cases of resistance.

21. The pressure force [26] on any plane figure inclined

to a flow has so far usually been determined from some one formula,

e.g., the ones given by Langley and Duchmin, Newton, Leslie, or

Lord Rayleigh. I now consider that some of these formulas are quite
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unsatisfactory, while others are applicable only to a square or

(with some error) to other shapes that are not elongated, e.g.,

circles. This is the case with Rayleigh's formula, which for angles

of inclination up to lO° gives values close to the ones I have found,

and Langley's formula, which agrees with my experiments for less

acute angles and which in general does not conflict seriously with

my experiments.

Resistance of a Right Circular Cylinder Having its

Axis or Height Either Parallel to the Flow

Direction or Perpendicular to it_
or an Inclination

22. The following table gives the resistance of a circular

cylinder whose axis is parallel to the flow direction.

The area S in formula (4) in this case denotes (in square

meters) the area of the base of the circular cylinder or the area

of the base of any right prism having e base of small elongation.

23. I made tests with cylinders of various sizes and found

that the values in the table are only approximately correct if they

are applied to cylinders of base diameter more than lO cm and (es-

pecially) are less_ the same is true if the wind speed deviates great-

ly from 1 meter per second.

24. The table shows that the resistance of a cylinder with

its axis parallel to the flow at first decreases as the aspect ratio

increases, but then it increases continuously, although slowly.

Dubois and Duchmin reported an analogous effect for the resistance
of bodies in water.

25. The following table gives the resistance coefficient

K for the flow direction perpendicular to the axis:

The area S appearing in (4) is in this case the area of the

longitudinal axial section of the cylinder. Here, as in the previous

table, K decreases as the flow speed or base diameter increases (the

latter above lO cm); further, K will be larger if the diameter is

less than lO cm or if the speed V is less than i meter per second.

But in the latter case (reduction of V and D) the error will be

larger.
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26. It can be deduced from the table that the resistance

per unit area of the longitudinal section increases continuously

with the length but tends to a fixed limit. This is true for aspect

ratios of 0.2 upward, at least; the effect is somewhat analogous to

that observed for a rectangular plate (see 6).

27. The following table gives the resistance of a circular

wire for various thicknesses.

For instance, for a wind speed close to 3 meters per second

2
the resistance of a wire i mm thick, in kg, is P = (59/1000) × SV

in which S is the area of the longitudinal axial section of the wire

in square meters. The K for speeds greater than 3 meters per second

will be somewhat less.

28. The resistance of a thin wire at a low speed may be

greater than the force on a square plate having the area of the

maximum longitudinal cross-section of the wire. In fact, K is 73

for a square plate (see 5), whereas for a wire it is in some cases

somewhat larger (see table).

29. I have performed many other experiments with cylinders

and have shown that the resistance is dependent on the diameter of

the base and the wind speed (apart from other factors), as the last

table shows.

In my experiments the resistance coefficient _aried from

0.46 to 1.29; this variation would be even larger for larger dif-

ferences in the diameters and speeds. It is clear that the resist-

ance even of a simple body such as a right circular cylinder is a

very complicated question; attempts to solve it must be abandoned

until the laws of friction have been completely elucidated. The
above also shows how unfounded are the usual theoretical calculations

of the resistance coefficient, which give (no matter what the basic

formula) a fixed value for the coefficient without relation to the

flow speed, aspect ratio of the cylinder, and diameter of the base
(see 67).

30. The resistance of a cylinder of infinite length

whose axis is inclined to the flow direction is expressed by com-

bining the table of (27) with the following one.

Then the components of the resistance of a wire inclined to

the flow are given by

!
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K 2
PI = •_kI- S • v

1000

and

K 2

= --.k2.S.vP2 lOO0

in which K is taken from the table of 27, and kI and k2 are from the

last table above. By S we must understand the area of the axial

cross-section of the cylinder in square meters. These tables may be

used to determine the wind force on a wire or cord retaining a kite

(aeroplane) or balloon_ and also to determine the curve it takes up,

or the forces on any inclined cylindrical parts of any structure

generally.

31. The resistance of the part of the lateral surface of

a right circular cylinder as taken between two generators is given

by the following table for increasing values of the length of the

arc of the cross-section normal to the generators.

The quadrilateral composed of the generators and the chords

of the bases was always a square in the tests.

A section of the surface at right angles to the generator is

an arc of a circle. The first column gives the ratio of the sagitta

of this arc to its chord.

The table shows that even considerable concavity (up to 0.3)

increases the resistance only a little.

32. This indicates that the concavity of the wing of a

bird in vertical motion in an atmosphere at rest is of little value

to the bird. The significance of this concavity will be explained

later on.

On the other hand, the resistance of a convex cylindrical

surface falls rapidly as the convexity increases.

The last column shows that two represents the limit of the

ratio of the resistances of a surface having its convex or concave

side facing into the wind.

33. In formula 4 we must understand by S the area of the
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projection of the cylinder on a plane perpendicular to the flow di-

rection if we wish to determine the resistance of a cylindrical surface.

34. Experiment shows that the resistance of a semicylindri-

cal surface presenting its side is only 1. 7 times less than when the

convex side faces the wind (axial section normal to the flow).

S__uare Plate Bent to Form Part of the Lateral Surface of a

Fight Circular Cylinder Between Two Generators and

Inclined to the Flow Direction at Various An_les

35. The cylindrical surface was placed to bring its gener-

ators (or the axis of the cylinder) normal to the flow. I determined

by experiment the component of the resistance along the wind direc-

tion and the component along a direction perpendicular to the wind

and to the generator (or to the axis of the cylindrical surface).

Consider a cylindrical wing having its generators horizontal; then

the first force (that along the _ind direction) may be called the

drag (or resistance proper), while the second we call the lift force

of the wing, because it tends to move the wing along the vertical.

The next table gives these drs_ and lift forces_ and also the ratio

of the lift to the drag (or the lift per unit drag).

36. The section of the cylindrical surface by a plane

normal to the axis of the cylinder is an arc of a circle. The ratio

of the lengths of the sagitta and chord of this (the concavity) is

given in the first coluntu.

By inclination is meant that of a plane passing through the

chord relative to the flow direction (line 1).

37. The table gives the K of formula 4, in which by S we

must understand the area of the projection of the surface on the

plane of the chord when the ratio of the sagitta to the chord is

i/2. S denotes the area of the curved surface itself for the other

surfaces.

38. The table shows that the greatest lift in every case

relates to an inclination close to 35 °.

It is unexpected that the lift on any cylindrical wing having

its concavity turned to face the wind persists even when the in-
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clination is zero (no inclination). The curves of variation of the

lift show that a ratio of sagitta to chord of 1/12 causes the lift

to vanish only for a negative inclination of -4.5 °. Lilienthal

found for this same concavity of _12 that the effect occurred at

--9 O ,

39. The lift of a wing with its convexity facing into the

wind is extremely small (last line of table).

40. The following deductions I have drawn from calcula-

tions and construction of curves:

a) The best concavity of a cylindrical surface for aero-

plane or bird is close to 1/15j Lilienthal gave 1/12.

This concavity facilitates flight (relative to plane wings)

by a factor two. Taking into account also the gain from the elonga-

tion of the wings, we find that the two together facilitate flight

by a factor 4.

In insects the weight of the wing is a negligible fraction of

the total weight and does not load the insect. The subtlety of

nature is restricted here to elongation of the wings. For the higher

animals economy in wing weight is extremely important, because the

wing weight in heavy birds is not a small fraction of the total

weight; and here the subtlety of nature appears again in the use of

concave wings, to reduce the weight and area.

41. b) The best inclination of a cylindrical wing is

12.5°j but the work required of an aeroplane changes by not more

than 16% for angles of the aeroplane to the flow between limits of

7-5 and 20 ° . Here of course we assume the absence of any resistance

other than that of the wings; if this is not so, the angle will be

more than 12.5 °.

42. c) The propelling screw, in order to work best in

the air, should not have plane blades; this conflicts with Hiram

Maxim's experiments with various kinds of screw.

43. d) The work done by an aeroplane with fixed wings of

optimum inclination, elongation, and concavity (while still of

simple cylindrical form, of course) is given by

m= o. 414P

I
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in which T is the work done against drag in kg-m, neglecting any re-

sistance apart from that of the wings (effects of screw and so on);

P is the weight of the vehicle with all its contents (in kg), and S

is the area of the wings in square meters.

The total minimum work of the aeroplane, with allowance for

all resistance and loss on the basis of analogies with resistance in

water (Froude), is found approximately as

= 1.242P _.

This formula almost exactly fits the data on the flying ma-

chines (aeroplanes) of Maxim, Langley, and Ader. The reason wb_v

Maxim's and Ader's machines did not fly may be that the wings were
not in accordance with the most favorable conditions for the least

work of flight.

Right Elliptic Cylinders

44. Tests were done only on right elliptic cylinders

whose generators were perpendicular to the flow, one of the axes of

the base lying along the flow. The ratio of this axis to the one

normal to the flow I call the aspect ratio of the cylinder.

If the cylinder had the long axis of its base along the flow,

the aspect ratio was greater than unity (less in the converse case).

The aspect ratio of the cylinders I used ranged from 0.164 to 8.63,

the heights of all being I0 cm and the minor axis of the ellipse

(or width) being half this.

45. Here I give the K of formula 4 as calculated for

flow speeds of l, 2_ and 3 _sec.

46. The K of fonmula (4)

p _
i000
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should be chosen in accordance with the aspect ratio of the cylinder

and the flow speed.

K will be less than that given in the column headed 3 in the

table for speeds greater than 3 _sec.

On the other hand_ for speeds less than I meter per second_

K will be larger than that given in the column headed I

By S is meant the area of the projection of the cylinder in

square meters.

47. The formula is applicable to cylinders of about th_

sizes I have used; K will be smaller for larger sizes and conversely.

The coefficient will also be slightly altered if the ratio of the

height of the cylinder to the width is different.

48. The table shows that the resistance decreases as the

aspect ratio increases up to a value of 6_ after which the resist-

ance starts to increase. This was so at all the flow speeds used.

49. It is also clear that K decreases as the flow speed

increases_ so the resistance does not increase as rapidly as the

square of the flow speed.

An aspect ratio slightly larger or smaller than one (i.e.,

for an elliptic cylinder that is close to a right circular cylinder)

gives hardly any change in K, as is best seen by constructing a

curve of K as a function of the cylinder's aspect ratio.

50. The form factor is a number that indicates the

factor by which the force on a square equal in area to the projec-

tion of the body exceeds the resistance of the body itself under

the same conditions.

The form factor varied from I to 4.8 in these tests; the

form factor for a cylinder increases with the aspect ratio (only up

to an aspect ratio of 6), with the flow speed, with the absolute

dimensions_ and as the height is reduced in relation to the width.

Long Right Cylinders and Prisms of Various Shapes

51. The aspect ratio of each of the prisms and cylinders

was close to 5.
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The ratio of the height to the greatest width was 2, as for

the elliptic cylinders. The results are given the table above.

52. The table shows that some angular bodies have form

factors not much less than that of an elliptic cylinder. In

general, the latter is far from being the best shape as regards re-

sistance.

The highest form factor at a flow speed of 3 _sec was 5.94;

that at 4 m/sec, 7. The highest form factors are often obtained for

bodies whose front parts (those facing the flow) are blunter than

the rear.

It is instructive to compare the present results with data on

the resistance of the water to the motion of flat-bottomed river

vessels, which may be taken as right cylinders with curvilinear

bases, but relatively very low ones.

A river steamboat of good design is taken to have a resistance

coefficient (see start of article for explanation of terms) of 0.16

to 0.20. Dubois and Duchmin's results would indicate that for a

flat plate moving perpendicular to its plane we should take this co-

efficient as 1.43_ in which case the form factor for the best river

steamships would range from 7.15 to 9, the mean form factor being

about 8.1, which is not far from the factor 5.94 found for the best

of my shapes for a flow speed of 3 _sec. The value is 7 for

4_sec, which is even closer to that of the steamships.

_peed_ _sec

i

jT

j-f

2

/V

Elliptic cylinder

K

19.0

18.0

17.33

16.75

16.02

Form factor

3.874

4.089

4.394

Body of best shape

K

19.00

17.25

16.17

15.

14.30

Form factor

3.874

4.267

4.866

[Table cont'd, on next page]
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[Table cont'd.]

Speed, m/sec

J-c

3

juv

juy

4

Elliptic cylinder

K

15.75

15.36

15.oo

14.67

14.44

14.14

13.88

13.64

13.38

13.17

12.97

Form factor

5.018

5.676

Body of best shape

K

13._8

13.07

_2.51

12.22

ll.90

11.59

11.33

ll. 12

Io.89

i0.70

lO.5O

Fozm factor

6.022

7.010

The form factor of a steamship is somewhat higher than that

of my models not so much on account of the shape as on account of the

size, which affects the resistance coefficient, as we have seen.

53. The above table gives the resistance of an elliptic

cylinder of aspect ratio 5-7 and of the best bird-shaped (in cross
section) model of aspect ratio 4.7.

We see from this that the resistance coefficients fall as the

speed increases, while the form factor increases. The form factor

is the same for both of these bodies at low speeds, but a difference
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appears in favor of the best shape as the speed increases.

54. Here, as always, there is a certain analogy between

resistance effects in water and in air_ although it might seem that

two media so different in nature as water and air should not give

comparable effects.

Resistance to a Flow Directed Alon_ the Axis of a

Surface Generated by Rotatin_ an Arc of a
Circle Around its Chord

55. Tests with such surfaces show that the resistance

does not increase as rapidly as the square of the speed, as I have

already noted for elongated cylinders, although there it is not so

pronounced as for bodies of rotation (continuous fall in K as the

speed increases).

56. Tests were made with bodies having aspect ratios

ranging from 2.3 to 7.4, the diameter of the mean cross section in

all cases being close to lO cm.

The least resistance (for any flow speed) occurred with the

body of aspect ratio 3.33_ which means that the resistance at a

fixed flow speed falls rapidly as the aspect ratio increases (e.g.,

from one) to 3.33. Further increase in aspect ratio causes the

resistance to rise again; this resistance apparently increases

without limit with the length of the body. The best aspect ratio

may be different for a body of another shape; for instance, it is

larger for a bird 3 if we include the tail.

57. With v2 (square of flow speed) as abscissa x and the

resistance of a given shape as ordinate y, the relation is found to

be an arc of a hyperbola. The origin lies on the curve at some

distance from the vertex. The coordinate axes are parallel to the

axes of the hyperbola.

58. This arc has a curvature that decreases as the

aspect ratio increases (although the curvature isalways variable

in a hyperbola); that is, the origin lies further from the vertex

of the hyperbola.

59. The equation of the curve is
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y = //Lx 2 + Bx + C - D.

The constants A_ B, C, and D have been determined for all

aspect ratios from 2.3 to 7.4.

60. The form factor Uf is given by

Uf _-

9.2"x

J Ax + Bx + C - D

2
In the limit_ when the speed increases indefinitely_ x or v

also becomes infinitely !arge_ and the formula becomes

9.2

uf= A

61. The results this gives for the limiting Uf for vari-
ous aspect ratios are as follows:

Aspect ratio 2.3 3.3 4.1 5.0 6.3

Uf 30.50 31.40 19.33 13.45 12.83

i.e._ the form factor is largest for the shape of aspect ratio 3.33.

62. The following table gives form factors for low wind

speeds (1 to lO m/sec).

63. The table shows that the form factor is largest for

the shape of aspect ratio 3.3_ which is found for any fixed flow

speed. Further, the form factor varies in response to speed change

i
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in a more pronounced fashion the blunter the body, i.e., the less the

aspect ratio. This may apply only for a certain degree of bluntness,

perhaps up to an aspect ratio not exceeding 2 (so far, I do not know

whether this is so).

There is much that might be said about the curves that ex-

press the laws, but it is difficult to speak of this without con-
sidering the curves themselves.

Resistance of Similar Elongated Bodies (Bodies of Different
Sizes But of the Same Shape)

64. The form factor increases with the size for fixed shape

and elongation for bodies smooth in the lengthwise direction and hav-

ing square cross-sections.

The following table gives results from tests on bodies of

similar shape whose aspect ratio was about 4:

Speed, _sec

2
&rea of projection, cm

i17.6

66

263

1

jT

4.7

4.7

5.4

1 j-# 2

4.4 4.9 6.9

35.1 5.4 7.I

6.3 6.9 8.0

2j-T 4

7.4 7.9

8.2 9.5

8.8 9.9

The table shows that the form factor increases with the size

as well as with the speed.
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65. This result shows that the form factor found here for

elongated bodies of rotation is not the greatest possible for the

given speed and elongation; it should undoubtedly increase with the

size of the body up to the dimensions of, say, an aerostat.

The results of 55 for elongated bodies of simple shape indi-

cate that the resistance, or the form factor, or the coefficient K,

is an unknown function of the wind speed v, of the aspect ratio, and

of the absolute size of the body.

I reported an attempt to solve this problem to the Academy in

the following year together with an account of new experiments con-

stituting a continuation of the present work.

66. So far the resistance of any body in a uniform flow

of air, and sometimes in water, has usually been found by calcula-

tion, and it has always been assumed that the resistance coefficient

is dependent on the shape of the body, but not on its size or on the

flow speed. In other words, it has been assumed that the resistance

of geometrically similar bodies is proportional to the square of the

flow speed and to the area of the projection on a plane perpendicular

to the flow.

Now we can see how far these deductions of the generally ac-

cepted theory are from the true position.

67. The basis for determining the resistance of any shape

has been the pressure on an inclined surface. The surface of any

body may be represented as consisting of a multitude of plane faces.

A double integration then gives the total force from the pressure

on the body. The first error arising here is that friction is

neglected, since it has always been assumed that the resistance of

the medium decreases without limit as the aspect ratio is increased,

which is never observed. We can go further. There are many formulas

for the pressure on an inclined elementary area. If we adopt as

basis Newton's formula (which is now rejected by all as conflicting

with experiment), we obtain results that, while not correct, are

sometimes not far from the true ones. For instance, experiment gives

the resistance coefficient of a sphere as about 0.43, while theory

gives 0.5. This may be why Newton's formula has been accepted for

centuries as reasonably reliable; many students have written disserta-

tions and obtained degrees on the subject of resistance. But now

Newton's formula is thrown overboard, and preference is given to

other formulas that give the pressure on an inclined unelongated

plane fairly reliably; these have begun to be applied to determine

the pressures on the surfaces of polyhedra and curves, but alas the

results are cruder than before, for the deviation from experiment
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becomes 100 or 300% (see my "Pressure of Air .... ").

The consequences of using any of these formulas show that the

generally accepted method is never satisfactory and constitutes a

second error; we need new views on the resistance phenomenon and

also experiments, the only way of testing the reliability of these

views.

Wedge with Two Faces

68. This I made up from two equal squares, each of area

2
i00 cm . The wedge was placed symmetrically in the flow, with the

line of junction normal to the flow direction. The angle was varied

from 0 to i00 °, and the wedge was set with its line of junction

facing into the flow or the other way round. The table above gives

the results in the form of the K of formula 4. The last line gives

the resistance of the faces of this wedge as placed separately some

distance apart in the flow without change of angle of inclination.

This table differs slightly from that presented to the

Academy of Sciences because in the latter the data were given in

the form of curves_ which I almost always have done for reports to

the Academy, apart from this case.

The table shows that the resistance of the separated faces is

at first somewhat less than that of the wedge with its edge facing

into the wind_ but then it becomes more_ the difference being up to

28% at 80 ° .

The initial slight difference may be a result of experimental

error.

The second and third lines of the table show that the re-

sistance of the wedge with its edge facing into the wind is at first

almost twice that for the reversed position, but the ratio of the

resistances becomes less as the angle increases.
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PRESSURE ON A PLANE SURFACE MOVING NORMALLY THROUGH AIR*

A Note from the Editor of Volume II of the Selected Works

This first part of the book "Pressure on a Plane Surface"

is devoted to the thermodynamics of gases; the work required for com-

pression and expansion in adiabatic and isothermal processes is de-

rived. Tsiolkovskiy here derives, in place of the generally accepted

adiabatic exponent k = C /C , where C and C are the specific heats
p v p v

at constant pressure and at constant pressure and at constant volume,

respectively, another coefficient A (redesignated as B by the present

A

V'T = const, where V is the specific volume and T is the absolute

temperature.

Tsiolkovskiy did not use the gas constant R, in place of which

he introduced the gas pressure at unit density and unit tempera-

ture, as well as the density at unit pressure and unit temperature.

The first quantity is the gas constant, and the second is its re-

ciprocal.

The remarks made by the editors on the relations linking

these three variables and the generally employed parameters render

Tsiolkovskiy's formulas readily applicable to any gas.

The forms of the tables compiled by Tsiolkovskiy for the

compression and expansion of gases present some interest to the

reader.

The second part of the book is devoted to a determination

of the pressure of the oncoming stream. Tsiolkovskiy examines

three degrees of accuracy in the determination of the pressure on

a plane surface positioned at right angles to the direction of flow,

name ly:

a) the pressure exerted by the stream in accord with the

.First printed in 1930 at Kaluga in a separate brochure published by

the author. Reprinted in volume II of the Selected Works of

K. E. Tsiolkovskiy, GONTI [State United Scientific and Tech. Press],

1932.

I
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conventional formula for low flight speeds (31);

b) the pressure obtaining under the assumption that the

density of the compressed air in front of the plate is proportional

to the pressure of the air per unit surface area (32), (34);

c) the pressure obtaining under the assumption that the

density of the compressed air in front of the plate corresponds to

adiabatic compression (37).

These findings are only a rough approximation where high

speeds are involved.

Towards the end of his book, Tsiolkovskiy cites, giving no

special calculations_ a table of allowable flight velocities for

bodies presenting different aspect ratios.
In view of the fact that the literature contains extremely

little data on motion at high velocities, this part of the book is

of interest for the further development of the theory.

F. Tsander

NOMENCLATURE

Formulas (i) through (30). Work - L. Pressure per unit surface

area - p. Volume - V. Absolute temperature - T. Specific weight by

volume - 7. The same variables with subscripts indicate constants.

The mechanical equivalent of heat A = 1/427. Specific heat or heat

capacity at constant volume - Cv. Weight of the gas - G. Specific

heat of hydrogen - CvH. Molecular weight of the gas - _. Same, for

hydrogen - _ .
H

Formulas (31) through (45). P denotes the atmospheric pres-
a

sure, and Pn the excess pressure on a plate moving normally to its

plane. The velocity is c. The acceleration due to the earth's

gravitational attraction is g.



32O

VARIATIONIN GASVOLUME

Wefirst turn to an explanation of the phenomenaoccurring
whenthe volume of the gas undergoes a change. This is necessary
in order to determine the resistance of the air to the motion of the
flat plate.

THEWORKDONEBY THEGASIN ADIABATIC
COMPRESSIONANDADIABATICEXPAN_ION

Wehave a certain volur_V of an ideal gas of specific weight
I

71 at a pressure p per unit surface area and at an absolute tempera-
i

ture T • The gas was expanded or compressed with no loss of heat,

and th%se variables changed in the process, to become:

V_ 7_ P_ T.

The gas then did a certain amount of work L corresponding to

the change in its temperature.

Using these arguments_ we can set up the following quite familiar

equations:

dL = pdV (i)

(d is the differential symbol).

p = PI!TITI ,
I

(2)

I
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where p denotes the gas pressure per unit specific weight and per

ii

unit temperature.

Consequently,

p p : (_T )*
ii 1 I i

(3)

7:7 : v :v (4)
i i

(the mass of the gas remains unchanged, of course). Moreover,

dT
dL = G " C -- (5)

VA

Here we have the notation: weight of the gas G; its specific

heat (or heat capacity) at constant volume C ; the mechanical e ui-
V

valent of heat A.

For the weight of the gas we have

G=F "V.
i i

(6)

*This is the equation of state of the gas, and Pll constitutes the

gas constant, usually denoted by the letter R.

--- Note by editor Tsander
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Solving equations (i) to (6), we find

CvIn

plA
• in (_). (7)

This is the absolute temperature dependence of the volume for

the case of expansion. For compression we have

v<T In = In

PllA

(8)

In the case of air_ C = 0.169; 7 = 0.00129;
v

tons i = 427.
zero degrees Centrigade); Pl = 10.33 _ ;

T : 273 ° (or
1

This then means:

Pll = 29.26; i/Pll = 711 = 0.0343; C /(PlI'A) = 2.481;
V

pl#:C = 0.4032,
v

where 711 is the specific weight of the gas at unit pressure and unit

temperature.

Accordingly,

in(Vl:V ) = 2.481 " In(T:TI), (9)
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ln(T:T ) = 0.4032 ln(V :V).
1 1

(lO)

On the basis of this last formula, we compile the table:

V 1

V

T 1

2 3

1.32 1.56 1.75

5

1.91 2.06 2.19

8 9 lO

2.31 2.42 2.53

Ii

2.63

Consequently, whenever the air is compressed 6 times, its absolute

temperature will be increased more than twice. And conversely, the ab-

solute temperature will be reduced to half whenever the gas is rarefied
6 times.

Since p is independent of the density, volume, and temperature
ll

of the air, then no matter what the volume of the air and no matter how

rarefied or dense the air may be, the reduction in volume by a definite

number of times (say by ten times) will always produce, in turn, a

definite change in the absolute temperature by a definite number of

tlmes(by 2.53 times according to the table).

On the basis of the foregoing, we present the following approximate

table on the next page.

Leaving aside the third row giving the centigrade temperature,

we have exclusively absolute temperature entries here. Clearly, from

the table, compression of ordinary air (at sea level) can easily lead

to a temperature increase to 2000 ° - 3000°C. Given the rarefied gas

at great heights, on the other hand, the temperature brought about by

compression of the gas could climb to several tens of thousands of

degrees, judging by the density and by the initial temperature of that
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9.3

6.2

3.1

1.6

Rarefaction

i 216 36

Cooling

37.5

-235.5

31.2

25

18.7

12.5

6.2

3.1

75

-198

62.5

5O

37.5

25

12.5

6.2
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-123

125

i00

75

5o

25

12.5

I
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+27

25o

200
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i00
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Heating

600 1200

327 923
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400 800

300 600
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I
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rarefied gas: for the lower the density, the higher the temperature may

climb, since multiple condensation becomes possible. The rarefied air

at great heights will be less likely to experience heat resulting from

the compression if the air is very cold.

But, in the atmosphere we do not have air at temperatures be-

low 80 ° freezing, which corresponds to the rather high absolute tem-

perature of 193 °.

For brevity, let us put (cf. 3):

c :(A •v Pll) : CvT1 _l:(pA) : _" (ll)

Then, on the basis of the fundamental equations (i) to (6), we find

v:v : (T :T)_, (I_)
I i

:v)l:BT:_ = (vI , (13)
1

)B+I
P:PI:(T:T (14)1

*The variable B is related to the adiabatic exponent k = Cp/C v where

C and C are respectively the specific heat at constant pressure and

P v I
the specific heat at constant volume, by the formula B = --

k-I

---Note by editor Tsander
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•:T = (p:p)l:(_+l)
1 l (15)

7:7 = (T:T)B, (16)
1 1

I:B

T:_ = (7:71) (17)1

l+(l:_)
P:P = (7:7) (18)

1 1

7:7 : (p:p)B:(I+B)
l l (19)

L:G'C " T '('l- _>
v T : A, (2O)

I

I:B

T.=B" Pl Vl[1- (Vl:V) ]. (21)

Formulas (12) and (13) show the change in volume as a function of

the change in temperature, and vice versa: the change in the temperature

as a function of the change in volume. Air must be compressed in the

engines for the engines to deliver an intensified output even when the

air is highly rarefied. That is precisely one of the applications of
these formulas.

Formula (19) yields the change in density as a function of the

change in pressure. This formula may be applied to a determination of

the drag on the plate in rapid flow normal to the plate.

In compressing the gas_ we are performing work• The amount of
this work must be known. Formulas (20) and (21) serve this purpose.
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Formulas (13), (14), and (16) may be stated in a single line:

T:T = (V :V) I:B l:(B+l) I:B

i l = (P:Pl) = (7:7 I) (22)

We have, of course, for all these "constant"gases:

C : C --_H* , (23)

v vH

7 = 7 " -- (24)
H

H

Here_ the dependence of the specific heat C and of the specific
v

weight of any gas 7 on the specific heat and the specific weight of

hydrogen C and 7H and the dependence of the molecular weights _ andvH

p _ are duly ex]pressed. We now find, from formulas (23)_ (24)_ (3)_ and
H

(ll):

*This applies only to gases having the same number of atoms per molecule;

for ideal monatomic gases the molecular specific heat at constant vol-

ume is 3_ for diatomic gases, 5, and it is even higher for polyatomic

gases.

--- Note by editor Tsander.
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= c 7 m :(p A) (25)
vH H i I

But the product CvH 7H is constant, so that B is also

constant. Hence_ all the formulas and laws derived therefrom are

applicable to all constant gases.
In all these formulas (12) through (21), we see a dependence of

the ratios on B. According to formula (25)*_ B depends on the tempera-

t_re T in the case of all the constant gases.
I

In the case of sea-level air at zero Centigrade_ B = 2.481;

lIB= 0.403_ B+ L= 3._ l+ l/B= L.403; 1/B(B+ l) = 0.287_
B/(B + 1) = 0.713 (cf. section 11.25).

Now_ in place of formula (22) we find

O. 403 O. 287 O. 403

_:_ = (v :v) = (P:P) = (7:7)
I i i i

VI:V P:P 7:7
= I i

This means that for air the change in the absolute temperature

will be inversely proportional to the root of power 2.48 of the change

in volume_ or directly proportional to the root of power 3.48 of the

change in pressure_ or directly proportional to the root of power 2.48 of

the change in density.

*This holds true because of the fact that the specific heat C in-
v

creases with the temperature.

--- Note by editor Tsander
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TI_E WORK IN AN ISOTHERMAL CHANGE OF STATE

Let us suppose that the gas has a constant temperature T_ despite

the change in volume. This may be the case in actual practice whenever

the change in volume takes place slowly_ so that the gas will have time

to cool or to be heated by the external environment. This will even

be the case when proper measures are taken to keep the temperature of

the gas at a certain level•

Then T = T in equations (1)-(14) and will be a constant quantity.

From these equations we find

dV

dL= p _ " 7 " V " -- , (26)
Ii I i I V

or, on the basis of formula (3):

• . dV
dL= p V w

i i V

On integrating_ we find

L = p " V ' inV + const.
i i

When V = V _ we have L = O; and hence
1

L= p
I " V I In " ___ • (27)

I
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Whenthe gas expands (V > V ), the work will be positive, i.e.,
1

work will be done by the gas. Whenthe gas is compressed (V < V ),
1

work will be done on the gas, for external work will be required to com-
press the gas, so that the work will be negative.*

COMPARISONOFT'HEWORKDONEIN ADIABATICANDIN
ISOTHERMALCHANGESOFSTATE

If the pressure were kept constant, then the work done in ex-
panding the gas from a volume V to a volume V would be

1

Dividing equation (27) term-by-termby equation (28), we obtain
the relative work involved in the change of volume with the temperature
kept constant

_h4elearn from formula (!i) that B = CJ(APlI); but Pll = R is
inversely proportional to the molecular weight, so that R is pro-
portional to the molecular specific heat Cv_which, according to
(23) for ideal gases having the samenumberof atoms per molecule, is
a constant. Hence, B is also practically an approximately constant
quantity for real gases.

--- Note by editor Tsander.

i
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n:n = In _VL._ " <v _ lb. (29)

Proceeding in the same manner with formulas (21) and (28), we now

obtain the relative work done in compression and in expansion, without

losses and without the gas acquiring heat from the outside environ-

ment (adiabatic expansion or compression)

Here we have I/B = 0.403.

Formulas (28), (29), and (30) enable us to compile a table of

relative work figures responding to a change in volume:

I) at constant pressure, 2) at constant temperature, and

3) in an adiabatic process.

All of the work figures in the table are assumed to be positive.

In order to obtain the true work figures, of course, we would have to

multiply these figures by the work corresponding to formula (28). For

example_ for air under normal conditions we may assume:

= tons = 29.26.
T = + 273° (or o°c); 7 = o.o013; Pl 10.3 _ ; Plli i

We may now compute

vG
i i i

For instance, in a triple expansion L = 20.6 ton-meters (TM)
I

or 20,600 kilogram-meters (kgm).
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Let us analyze the table appearing below. It consists of two
parts. The first refers to compression of the gas, and the second to
its expansion. The first row indicates a slight change in volume, the
second the relative difference change in the volume, and simultaneously
the work done at constant pressure.

The unit of work used throughout the table is the work involved
in changing the volume by one unit with the pressure kept constant

2
(lO.3 ).

The third row refers to the work of compression with the

temperature held constant, and the fifth row to the same with tempera-

ture v_riable.
i Let us turn to the work done in compression. We see that, as a

result of the continuously increasing pressure, the work done in com-

pression is far greater than the work done under constant pressure.

Thus, at a compression of i000 times, the work done increases

by almost seven times. In response to the natural temperature increase

(i.e., with no effort to eliminate the temperature increase), and a

volume reduction of I000 times, the work increases by 37 times, on the

other hand. The less the compression_ the less these deviations will

be.

The seventh row indicates the number of times the work in

compressing the gas will increase as a result of the increase in tempera-

ture resulting from compression of the gas. For instance, in response

to a volume reduction of i000 times, the work done will increase 5.4

times because of the heating of the gas.

We now turn to that portion of the table which refers to rare-

faction of the gas. Here the work done by the gas is far less than

the work done with the pressure held constant. The fourth row shows

how many times less it will be when the temperature is kept constant

(or when artificial heating of the gas from the external surroundings is

resorted to). For instance, in a lO-fold expansion the work will be

almost 4 times less than at constant pressure. If natural cooling is

allowed to take place, however, the work will be six times less in

response to the same volume reduction (see line six).

Nevertheless, at constant temperature the work of infinite

expansion of the gas will increase without bounds_ even though it in-

creases slowly as the volume is increased [formula (27)]. On the

other hand, the work done by the gas in expanding, and being allowed

to cool naturally_ is completely limited, despite the infinite increase

in the volume of the gas [formulas (20) and (21)].

_le eighth line indicates the effect of natural cooling on the

work done by the expanding gas. This effect is a slight one in response

to a slight expansion_ but will take on ever greater proportions as the

expansion becomes more pronounced. For instance, in response to a

lO00-fold expansion the nabL_al work done by the gas in expanding (with

ii
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the temperature allowed to drop freely) will be almost 3 times less than

when the temperature is kept fixed artificially.

It's hardly necessary to remind the reader that our table remains

applicable to all ideal gases and to superheated nonconstant gases and

vapors. It also applies to all densities and to all temperatures at

which the gas remains a constant-parameter gas.

PRESSURE OF THE ONCOMING AIR. APPROXIMATE

DETERMINATION OF AIRSTREAM PRESSURE

The aeroplane flies at a high speed through the rarefied layers

of air. The air impinging on the nose of the aeroplane is therefore

compressed and can thereby diminish the work that the compressor has to

perform. The pressure of the oncoming flow is exerted on the air in

the nose section of the airplane; this pressure is the same as that ex-

erted on a flat plate placed normal to the flow. How great will this

pressure be at different flight speeds (aeroplane speeds)?

The reader is cautioned that all of the subsequent calculations

must not be taken as either exact or rigorously scientific. It is well

enough in this context that the calculations yield so much as some

idea of the amount of pressure exerted on the plane normal to the flow.

When the air in front of the plane is slightly compressed, we may

make use of the familiar formula

c2

p " 7 , (31)
n 2g a

where the speed should not exceed I00 meters/sec. This formula was

also derived by me for the inertial resistance presented by the air.*

*Cf. Trudy ob-va lyubiteleyyestestvoznaniya. Fiz. otd. (Proceedings

of the Society of Natural Science Amateurs. Physics Section). _,

Moscow, 1891.
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In this formula p denotes the excess pressure, g is the
n

acceleration due to gravity_ and 7 is the specific weight (by
a

volume) of the air.
Whenthe speed exceeds I00 meters/sec, the air in front of the

plane will be compressedby the strong pressure, and formula (31) will
produce a large error. In that formula the specific weight 7 must

a
be replaced in accord with the formula

Pn + Pa_7 = 7 (32)
a 1 p

a

where 71 is the density of air at rest, and Pa

pressure.
From formulas (31) and (32), we obtain

is the atmospheric

c2 Pn + Pa

Pn = 71 "
2g Pa

(33)

Hence

c2 7a c2

Pn = 2g 71 : I - Pa 2g

(34)

At low speed c, formula (31) is derived from the above for-

mula.

Clearly, from formula (34), the speed cannot be very great;

the constraint

I
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c < _2g • Pa : 7a " (35)

must be observed.

Suppose g = I0 square meters per sec; p = i0 tons/square
a

= 0.0013. Then, from formula (35), we compute c < 392
a

meter;

m/sec.

Clearly, at that velocity we seem to end up with an infinite

condensation, so that no further increase in the velocity is possib]e.

But this is an error, first because the gases are nonconstant gases,

and because they cannot be condensed infinitely; secondly, because

we failed to take into account the heating due to compression of

the gas.

But for the time being let us return to our last fo_nulas.

The pressure, according to formula (34), will be greater than the

pressure according to (31) by as many times as

7a c2

Pn(34) n(31) " Pa 2g
(36)

Equations (31), (34), and (36) yield the table shown on the

following page.

The second line indicates the stream pressure in tons per

square meter according to formula (31). The third line gives the same

according to formula (34). The fourth line gives us the ratio of

these pressures. According to formula (34), of course, the pressure

is greater because of the compression of the air considered in the

calculations. Thus, at a velocity of 50 meters a second error is 1.6%,

while at I00 m/sec it is 7%, and at 250 m/sec the error attains a

figure of 68%.

It is obvious that formula (31) m_y be resorted to only for

speeds up to I00 _sec. But formula (34) cannot be used for high

speeds either. Actually, at a speed of 350 _sec the air pressure

becomes 3.9 ton per square meter, so that the air becomes heated,

becomes less dense, and the pressure diminishes as a result. It is

evident from the table that when the gas is compressed four-fold the

absolute temperature will be increased by a factor of 1.75. The air
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will become rarefied, and the pressure lessened, by the same factor.

PRESSURE ON A PLATE AS THE AIR DENSITY

IS VARIED ADIABATICALLY

In order to obtain a more accurate formula for the pressure,

we have to take the temperature increase due to compression of the

air into account. Formula (19) gives

B : (1+ B)
7 : 7 (P : P )

a a

But here

p=p +p,
a n

where p
a

pressure.

equation

is the pressure in a quiet atmosphere, and p is the excess
m

From these last formulas and formula (31), we derive the

2 B: (l+B)

c ._Pn + Pa_p = -- . 7a
n 2g Pa

(37)

When p , or the excess pressure, is many times greater than

n

the pressure p in the quiet a_r, then we may put
a
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2
o B: (I+B)

p =-- 7 ('__-)
n 2g a _a_

(38)

and hence, once the unknown p is determined, we find
n

B+I 2 B+2
(39)

Clearly, from the foregoing, B = 2.481; accordingly

p : p
n a

6.96
= K " C (4o)

or, approximately:

p : p = K • c7;
n a

where

B+ I

K = [(7a : pa ) : 2g] (4].)

7
a

At sea level and zero temperature we may put:

-20

= 0.0013; g = 10; Pa 10. We then find K 89"10

For example, putting c = 400 _sec_ we find
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p : p = 1.46,
n a

or

2

p = 14.6
n

According to formula (31) we find, for almost the same speed,

Pn = I0 tons/m 2, while according to formula (34) we end up with infin-

ite pressure.

Once the pressure ratio (40) is known, and with the assumption

that the excess pressure p is so great that we may assume
n

p : p= I,
n

where p is the absolute pressure of compressed air, we may use

formulas (15) and (18) to compute the ratio of the absolute tempera-

tures T/T and the ratio of specific weights 7/7 •
I a

At zero temperature and at sea level, we obtain

p :p =p : p =89
n a a

-2O 7
i0 • c .

Also, we have

)0.287 2I: (B + i) = 6.61 " 10 -6. c .
T : T = (P : Pa ) = (P : Pa

a
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And further

: (l+B) -13 5.Ol
7 : 7 = (p : p ) = 1.35 IO c

a

-13 5
or approximately 1.35 " I0 • c .

From these last two equalities, we see clearly that the absolute

temperature will increase in proportion to the square of the speed,

while the density will increase in proportion to the fifth power of the

same speed.

All this now enables us to compile the following table:

Speed, in km/sec

0.4 o.5 1 2 3 4 5

Pressure ratio (p/p) at sea level and zero temperature
a

1.46 6.95 889.6 ll3 920 1 946 000 14 580 000

Absolute temperature ratio T/T
a

69 530 000

1.0576 1.65 6.61 26.44 59.49 105.76 165.25

Corresponding absolute temperature T

289 450 1804 7218 16 241 28 870 65 lO0

Density ratio F/F
a

1.38 4.31 138 4420 33 53o 141 4o0 431 200



From formulas (41) and from the sequel, it is clear that the
pressure ratio, temperature ratio, and density ratio will not vary
whenthe ratio 7 /P is constant. This means that the table refers

a a

to all layers of the atmosphere equally, i.e., to any rarefaction or

compression of the gas whatever, provided the initial temperature of

the undisturbed air remains the same. The higher figures listed in

this table may be applied to the rarefied layers of air 3 for instance

when the air is rarefied thousands or millions of times, i.e., at
very great heights.

At a speed of 400 m/sec, the pressure will attain a figure of

almost 1.5 atm, the absolute temperature will rise to 289°j or 16°C_

and the density will increase by a factor of 1.38. At a speed of 0.5

km/sec, the temperature is still not very high (177 °) and the air is

not yet capable of glowing. Here the air is condensed 4.3 times_ at

a speed of 1 k_sec the air would be capable of heating a body to

produce a glow. The density of the air would be 138-fold at that

point.

At a speed of 2 k_sec and higher 3 the computed condensation

would not be justified at sea level in view of the nonconstant nature

of the gas. But at great heights this could be partially justified

if by nothing else at least in the ratio of the high temperatures.

Assume, for example, that the air has undergone a thousand-fold

rarefaction. Then it may be compressed 500 times without its ideal

properties, inherent in a constant gas, being impaired (taking into

account very high heating). This means that a speed of 5 k_sec and

a density increase of 431,200 times is possible. The absolute tem-

perature would reach 65,000 ° in the process.

Here we cannot help thinking of using the high temperature of

compressed 3 greatly rarefied gases for different purposes. For ex-

ample, would not diatomic gases decompose into monatomic gases?

Would not radioactive phenomena ensue?

The tables and formulas could still be used at even higher

speeds if the plate were moving through even more rarefied layers of

air.

Moreover, we have to remember that the greater the speed at

which the plate is moving and the greater the degree of condensa-

tion of the medium -- even in the rarefied layers of the atmosphere --

the more accurate will be the figures arrived at using our formulas.

In fact, they would be true provided similitude is observed with

respect to the densities. At low speeds, the density of the medium

is almost constant throughout the entire range. It is precisely

under these conditions that the formulas will be valid. At high

speeds, however, the condensation will occur only in the immediate

vicinity of the moving plate. The farther away from the plate, the

less the density will be perturbed. The extreme lack of uniformity
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of the densities constrains us to introduce a variable coefficient

less than unity into our formulas_ and this coefficient will be in-

creasingly farther from unity as the speed of the plate increases.

We leave it to the mathematicians to carry out more exact studies

on the drag on the plate_ in order to find the correct factor for

these drag formulas.

Thus_ the tabulated figures will appear slightly too high to

the degree that the speed is greater.

From (37), for any speed and pressure, we obtain

Pn 7a

Pa 2g • Pa

l)B:(l+ B)
P
a

(4e)

This means

c =%/ (Pn : Pa ) 2g • Pa

V 7a +
(43)

For high pressures_ however_ we would have obtained from formula

(39):

l:(B+ i)
2

: (p : pa) " (2g" p : _a). (44)
a

Let us now use formula (43) for any speed. But the pn/Pa

ratio for high pressures must be expressed, in this formula_ in

terms of the density ratio 7/7 by means of formula (18). We
a
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then have

2 2gp a
C --

7a [(7 : 7a)

(B + I) : B

: 7a)

(B+ 1):B B : (2+2B)
+ l]

(45)

We put g = I0; p = I0; 7 = 0.0013; B = 2.48; B/(2 + 2B) =
a a

= 3.356; B/(I + B) = 0.713; (I + B)/B = 1.403.

Now we may use formulas (42) and (45) to compile our next

table.

We see from the table that the condensation due to the on-

coming airstream is insufficient to support the operation of the

engines at speeds up to 955 _sec. But beyond this point the con-

densation is even far greater than needed. For example, at a speed

of 1200 _sec the condensation will be 435, i.e., it will be triple

that required, so that the engine performance will be tripled: all

that is needed is the fuel and strong working cylinders. At a speed

of 1860 _sec, the same table indicates that the condensation would

be II times more intense. This means that compressors would become

superfluous at a speed of I000 _sec. Unfortunately, the temperature

would reach 1500°C at that speed of i k_sec.

However, we already pointed out that the condensation and the

temperature must be much less than that.

Let us say a few words on the formulas for the resistance of

the air normal to the moving plate. Only at speeds up to 200 to

300 _sec will these formulas be considered suitable [cf. the table

on p. _]. At higher speeds, though, these formulas will yield

pressure, density, and temperature values which will be too high.

But we shall have to settle for these formulas until better ones are

derived.

Vehicles traveling through the atmosphere could hardly ac-

quire a speed greater than 1 k_sec. And the table indicates that

the density of the air bathing the plate would be increased 138-fold

in that case.

Is travel economically feasible under those conditions?

The point is that the vehicles have no blunt ends, particularly

in the front.

According to the table, a velocity of 300 m/sec would en-

tail only a doubling of the density of the air in front of the

plate. Accordingly, this velocity is entirely tolerable for spherical
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bodies: the condensation of the medium in front of such bodies is

virtually nil.

PERMISSIBLE FLIGHT SPEED FOR BODIES

OF DIFFERENT ASPECT RATIO

For a smoothly streamlined body with double the oblong aspect

of a sphere, a speed of 600 _sec would be attainable with no appreci-

able condensation of the medium. We can compile a table on the basis

of this reasoning.

Aspect ratio of bodies, or length/diameter ratio

1 2 3 4 5 6 8 l0 15 2o

Permissible economic speed, in km/sec

0.3 0.6 0.9 1.2 1.5 1.8 2.4 3 4.5 6

At these speeds, there will be no appreciable condensation of

the medium, so that there will be no increased inordinate expendi-

ture of energy in the flying of a bird-like flying machine.

At high altitudes the tail end may even be flat; but we have

to fly downward as well. Therefore a flat tail would be unfeasible.

It would also be impractical from the standpoint of design. But the

portion of the tail from which the orifices of the conical tubes

ejecting the combustion products protrude, would necessarily be

flat.



349

FLIGHTOFMETEORS.THEIRHEATING

Let us now turn to the table [page/245] with the object of
demonstrating its plausibility, at least pa-_ially.

Meteors, or stones from outer space, when flying through the
atmosphereheat to a glow and give off light. The reason for this is
the delay imposed on their motion by the atmosphere, so that all the
mineral in the meteor becomesheated as a result: the energy assoc-
iated with the motion becomesconverted to heat. Another reason is
the condensation of the air ahead of the stone. Since the stone is
of irregular shape, the condensation and the temperature of the air
will be far less than indicated in the table. For example, at a speed
of 5 k_sec the mediumwill be condensed400,000 times, and the tem-
perature of the mediumwill ascend to 65,000°. Bearing in miud the
enormousspeed of aerolites (up to 50 km/sec and faster), the condensa-
tion and the temperature should be justified.

But we must rememberthat this condensation and temperature do
not appear all of a sudden, but gradually: time and a long path
traversing the mediumare necessary for the figures tabulated to be
achieved. The atmosphere is bounded, however, and fireballs for
the most part traverse a path not longer than I00 km through it.
At a height of i00 km, the air is rarefied to an astonishing degree_
now let us supposea million times. If i00 kmof this air were to
be contractedto i m_wewould end up with a mediumof 0.i the density
of the sea-level atmosphere.

It is understandable that neither the condensation nor the
temperature indicated in the table would be achieved. The resistance
of the air would be so low that the meteor itself would not become
heated: it would fly past unnoticed and dark.

That is why a certain height is needed for the meteor to glow
and becomevisible. The boundary for these shooting stars is
100-200 km. They will not be visible higher up. The air higher up
would be condensedso little by fireballs that it could not glow.
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APPENDIX 1

Zhurnal Russkogo fiz.-khim, ob-va (Journal of the Russian

Physico-Chemical Society), 1882, XIV, No. 8, Section l,

Physics Series, p. 480.

Extract from Official Record of Fortieth Meeting of the Physics Braanch

of the Russian Physico-Chemical Society t 26 October 1882.

6. Professor P. P. Fan-der-Flit presented a paper on the theory

of gases by Mr. Tsiolkovskiy, a teacher at the Borovsk district school,

Kaluga Government. He reported that although the paper itself con-

tained nothing new and the conclusions were not strictly correct,

nevertheless, it revealed the unusual capabilities and keenness of

the author, who had not received a regular education and had acquired

his knowledge entirely on his own. The author's only sources for the

present paper had been a few elementary textbooks on mechanics,

Professor Petrushevskiy's course on experimental physics, and

Professor Mendeleyev's "Foundations of Chemistry."

In view of this it was desirable to foster the author's

further self-education.

The Society decided to petition the trustee of the Petersburg

or Moscow District to transfer Mr. Tsiolkovskiy, if he so desires#

to a city where he might have the advantage of greater scientific
res ources.

APPENDIX 2

Zhurnal Russkogo fiz.-khim, ob-va, 1897, XXIV, Physics

Series, No. 9, Section l, p. 350.

Official Record 168 of Two Hundred and Eighteenth Meeting of the

Physics Branch of the Russian Physico-Chemical Societyj 23 September

In the chair: F. F. Petrushevskiy



352

2. The clerk read a letter from Mr. Tsiolkovskiy of Kaluga

containing a brief description of a series of experiments which

Mr. Tsiolkovskiy intends to perform in order to determine the pressure

of moving air on solids of revolution and the resistance offered to

the motion of such bodies. Referring to all his previous work on the

problem of the controlled aerostat or dirigible, Mr. Tsiolkovskiy

begged the Branch to examine his proposals and, if it found them

sufficiently important and interesting, to make him a grant of

200 rubles from the Branch funds to finance them.

It _as resolved to refer Mr. Tsiolkovskiy's proposals to a

review committee composed of D. K. Bobylev, V. V. Lermontov and I. V.
Meshcherskiy and to request him to send the committee a more detailed

description of his apparatus and his proposed experiments.

APPENDIX 3

Zhurnal Russkogo fiz.-khim, ob-va, 1898, XXX, Physics

Series, No. i, Section I, p. 28.

Official Record 170 of the Two Hundred and Twentieth Meetin_ of the

Physics Branch of the Russian Physico-Chemical Society_ ii November

In the chair: F. F. Petrushevskiy

3. The clerk, on behalf of Professor D. N. Bobylev, read the

decision reached by the committee responsible for reviewing the program
of experiments on the investigation of the resistance of air submitted

by K. Tsiolkovskiy. The committee had come to the conclusion that, in

the form in which Tsiolkovskiy proposed to perform them, the experi-

ments could not lead to any results of practical importance. For

this to be achieved, it would be necessary for the experiments to be

conducted on a much larger scale, requiring considerable funds which

the Society did not have currently available. Accordingly, the com-
mittee recommended that Mr. Tsiolkovskiy be informed that he could

not expect material assistance from the Society in carrying out his

experiments, the refusal being justified on the grounds above-mentioned.

After a brief discussion of the matter, it _as decided to send

Mr. Tsiolkovskiy a reply framed in the terms suggested.
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APPENDIX 4

i0 September 1899

To his excellency, the Vice-President of the Imperial Academy

of Sciences, from Konstantin Tsiolkovskiy, author of works on aero-

nautics and physical astronomy (address: Kaluga, Georgiyevskaya ul.,

dom Speranskoy).

I beg your excellency to inform the Academy of Sciences of my re-

cent experiments on the resistance of air described in "Vestnik opytnoy

fiziki" (Odessa, Nos. 269-272, 1898-1899).

I have no offprints of the article and the journal is all sold

out; accordingly, I much regret I can not send you an actual descrip-

tion of the experiments themselves.

Perhaps the competent members of the Academy would do me the

honor of reading my work and estimating its value.

If their opinion is favorable, then perhaps I may hope for the

material cooperation of the Academy in performing new experiments on

the resistance of air. It is my intention that these will be more

extensive, more numerous, more accurate, more varied and carried out

with a greater flow of air and at greater velocities than the previous

ones.

As early as eight years ago, in 1891, I published a description

of some of my earlier experiments in Volume IV of the "Trudy 0td.

fizich, nauk Imper. Moskovskogo 0bshchestva lyubiteley yestyestvoznaniya_

Since that time I have been considering the idea of carrying out m_h

more accurate and extensive experiments on the resistance of air_ and

I flatter myself with the hope that the foremost scientific institution

in Russia will not deny me its support.

The results of the experiments would be sent to the Academy and

a description of them, together with the drawings and computations,

could be published in the "ZapiskyAkademii" (if they should so merit).

I remain, your most humble and respectful servant, Konstantin

Tsiolkovskiy.

Photographs of all the apparatus and models (after completion of

the new experiments ) would be sent to the Academy.
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Archives of the Academyof Sciences USSR

File 38, schedule 2. No. 633, items l, 2.

APPENDIX >

Official Record of Meetin_ of Academ_ of Sciences. Imperial Academ_

of Sciences, Physico-Mathematical Branch, No. X, 22 September 18_.

242. In a letter addressed to the Vice-President of the Academy

and dated lO September, Mr. Tsiolkovskiy, the author of works on aero-

nautics and physical astronomy, drew attention to his recent experi-

ments on the resistance of air (see "Vestnik opytnoy fiziki," Odessa_

Nos. 269-272, 1898-1899) and begged the Academy, in the event that

they were found to be of sufficient scientific merit, to extend him

material assistance in conducting further experiments.

It was decided to refer Mr. Tsiolkovskiy's letter to Academician

M. A. Rykachev for review.

APPENDIX 6

Extract from Official Record of Meetin 6 of the Imperial Academy of

Sciences_ Ph_sico-Mathematical Branch_ No. XI, 6 October 189_.

270. In accordance with para. 242 of the minutes of the meeting

of 22 September, Academician M. A. Rykachev gave the following report

on the note received from Mr. Tsiolkovskiy:

"The author begs the Academy to extend him material assistance

in order to enable him to continue his experiments on the resistance

of air described in his article 'Davleniye vozdukha na poverkhnosti,

wedennyye v iskusstvennyy vozdushnyy potok' (Air Pressure on Surfaces

Introduced into an Artificial Flow of Air), published in Nos. 269-272

of 'Vestnik opytnoy fiziki i elementarnoy matematiki.'

These experiments deserve the full attention of the Academy,

both as regards the idea behind them and their diversity. In spite

of the primitive home-made apparatus available to the author, he has

succeeded in obtaining some very interesting results.

]
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In order to obtain a flow of air, Mr. Tsiolkovskiy uses a wind

machine, rather like a winnowing machine, driven by weights of various

sizes (i/2 lb., 1 lb., 2 lb., 4 lb., 8 lb., and 16 lb.).

In order to give the stream of air a single general direction,

he has arranged in the mouth of the machine a box, open on two sides,

fitted with thin horizontal and vertical plates, designed to direct the

air in parallel jets, so that the air leaves the box in a single hori-

zontal flow. The test model is placed in the center of this flow, a

short distance from the mouth of the wind machine. The cross-sectional

area of the flow is 1200 sq. cm and the cross-sectional area of the

test body not more than 80 sq. cm. The model is placed on supports

fastened to a tank that floats in water contained in a second vessel

fixed rigidly to a table. To the same table there is fastened an up-

right supporting a thin, light needle which can pivot freely like a

pendulum. A very light and mobile wire tie connects this needle with

the supports on which the model stands. The slightest pressure on the

model will cause it to move, together with its floating tank, thus de-

flecting the needle until the weight of the deflected needle balances

the pressure. The amount of deflection, determined with the aid of

a fixed horizontal millimeter scale mounted behind the needle, also

gives the pressure on the model. Absolute values of the pressure,

corresponding to a given deflection of the needle, are measured

with the aid of weights suspended from a string attached to the float-

ing tank and carried over a pulley block. In order to determine the

flow velocity at the different loads used to drive the wind machine,

the author measured the pressure produced by the flow on plates arranged

normal to the flow and then computed the velocity from the formula pro-

posed by Cailletet and Colardo, who have determined the relation be-

tween pressure and velocity for the rectilinear motion of a plate.

Among other things, the author determined the air pressure on a plate

at different angles of inclination, every 5 degrees, obtaining the

unexpected result that for a plate moving at about 50 degrees to the

direction of flow the normal pressure on the plate is greater than for

a plate arranged perpendicular to the direction of flow. Experiments

were performed on right prisms, cylindrical surfaces with various cross

sections, polyhedra, a sphere, elongated solids of revolution, and so

on. The author determined the resistance as a Ikuuction of the flow

velocity and the aspect ratio of the shape. Very interesting experi-

ments were performed with the object of determining the effect of the

rear part of the model. It was found that for an elongated body, one

end of which was spherical and the other end a sharp cone (Schwarz's

aerostat), the resistance is much less when the spherical, rather than

the conical end is turned into the flow. The extent to which the

author has succeeded in obtaining reliable results is clear from the
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agreement observed in testing the pressure on a square plate at flow
velocities obtained by driving the wheel of the wind machine with
loads regularly increased by a factor of two. The pressure on the
plate was then found to be: 4.5, 9, 18, 36.5, 73, and 145, i.e., the
variation was almost exactly that which theory might lead one to ex-
pect. Someof the experiments were devoted to determining the air
friction on a plate arranged parallel to the flow The experiments
were performed with small models and at low flow velocities Moreover,
the velocity in different sections of the flow was not determined. For
all these reasons it would be highly desirable to perform experiments
on a larger scale with more accurate instruments, and I beg to suggest
that the Branch grant the author's request and extend him material
assistance from the fund intended to meet scientific needs."

The Branch decided to ask Academician M. A. Rykachevto enter
into communication with Mr. Tsiolkovskiy and request him to submit a
program of proposed experiments and an estimate of expenses, warning him
that this estimate must be prepared as economically as possible in view
of the limited resources of the Academy.

Archives of the Academyof Sciences USSR

File I, schedule la, No. 146.

APPENDIX 7

Extract from Official Record of Meetin_ of the Imperial Academy of

Sciences, Physico-Mathematical Branch, No. XVI, 15 December 189_

384. In accordance with an earlier Branch resolution (para. 270),

Academician M. A. Rykachev presented Mr TsiolkovskJy's detailed pro-

gram of experiments on the resistance of air and his estimate of the

corresponding expenses. According to this estimate, the completion of

all the experiments described in the program would require an expendi-

ture of approximately i000 rubles, but Mr. Tsiolkovskiy was ready to

accept_ according to his statement_ any material assistance that the

Academy might find it possible to extend. In view of the interest

which the Branch had shown in these experiments, Academician M. A.

Rykachev requested that the Conference, when it distributed the funds

for the scientific needs of the Academy in 1900_ should determine how

much assistance it could grant to Mr. Tsiolkovsk[y.
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It was decided to examine the matter further at a joint meeting

of Branches I and II on 12 January 1900.

Archives of the Academy of Sciences USSR

File I, schedule la, No. 146.

APPENDIX 8

Extract from Official Record of Meeting of the Imperial Academy of

Sciences, Joint Meeting of Branches I and _II, 12 January 1900.

3. Academician M. A. Rykachev: "In connection with the matter

of cooperation between the Academy and Mr. Tsiolkovskiy in the conduct

of his experiments on the resistance of air (see para. 384 of the

minutes of the meeting of the Physico-Mathematical Branch of 15

December 1899). To carry out all the experiments described in

Mr. Tsiolkovskiy's proposed program would cost i000 rubles, but

Mr. Tsiolkovskiy, according to his statement, is prepared to accept

a lesser amount of aid. Academician M. A. Rykachev considers it de-

sirable to grant Mr. Tsiolkovskiy a thousand rubles in the year 1900

in order to carry out all the experiments he has planned."

The joint meeting resolved:

3. To Academician M. A. Rykachev for the execution of

Mr. Tsiolkovskiy's experiments on the resistance of air the sum of

470 rubles.

Archives of the Academy of Sciences USSR

File i, schedule la, No. 147.

APPENDIX

Abridged report by Konstantin Tsiolkovskiy (address: Kaluga, Geor-

giyevskaya ul., dom. Pobedina) to the Imperial Academy of Sciences in

connection with his experiments on the resistance of air performed

under the auspices of the Academy between March 1900 and December 1901.
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This report includes: 58 table-drawings (86 drawings), a summary

of conclusions based on my notes and raw material -- the series of

figures recorded by myassistant during the experiments and serving

as the basis of mywork (24 pages).

The drawings are copies of the original drawings which I have

retained. These copies have been made more roughly, but are adapted

for easy intelligibility and, if necessary, publication.

The summary of conclusions based on my notes is useful for a

rapid review and evaluation of my work. The raw material, in the

form of rows of figures, indicates the fluctuations of the needle

during the observations.

I requested I000 rubles from the Academy for these experiments.

The Academy granted me 470. I accepted this money with much gratitude

and pleasure and decided to use it to finance all my proposed experi-
ments.

If God grants me health and strength, I shall do what I propose

to do even if I have to draw upon my own rather limited means.

Whatever the position of the Academy, I shall never abandon

my research.

At the same time, I am anxlous to have the material as well as

the moral support of the Academy, which will be possible only if, in

the eyes of the Academy, my work deserves it.

Thus, I shall a_ait the verdict of the Academy and assistance

commensurate with this verdict. I shall accept the verdict uncom-

plainingly, but in no circumstances shall I cease my experiments,

since it is permissible to hold one's own opinion, and in mine these

experiments are of some value.

If the Academy does not reject them, I shall prepare a note on

my further experiments for next December (December 1902 ).

If the Academy does me the honor of publishing mywork, I humbly

beg that instructions be given for me to be sent the galley proofs.

I also beg, most humbly, that after my work has been examined

and evaluated I be informed of the opinion and decision of the Academy

in the persons of its highly esteemed members.
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This is of the greatest importance for me, since it will de-

termine my future path in connection with the communication of my

discoveries concerning the resistance of air.

With the most profound respect,

I remain,

K. Tsiolkovskiy.

Reprinted from an authentic letter of K. E. Tsiolkovskiy's_

written on the first page of the manuscript which he submitted to the

Academy of Sciences and returned to him together with the same. It

is now preserved in the archives of the Moscow Branch of the Archives

of the Academy of Sciences USSR, file No. 555.

APPENDIX I0

Letter Written by K. E. Tsiolkovskiy to Academician M. A. Rykachev

Dated i September 1901.

Your excellency,

I have now been working hard on my experiments on the resistance

of air for more than a year, but my task is still far from completed.

The description and analysis of the experiments I have already per-

formed take up more than 60 pages of the final report I am preparing

for the Academy, and to this must be added 20 drawings (sketches of

apparatus and graphs). In spite of this the proposed program of

research is still not exhausted. I can not even predict with confidence

when this will be. However, I do know that I have worked hard and

accomplished something. Please advise me what to do now: continue

my experiments or pause for three months in order to prepare a copy

of my findings for presentation to the Imperial Academy of Sciences

in December 1901.

I am inclined toward the latter course, since my health is not

too good, and God only knows what next year may bring.
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I would like to have the report published somewhere and would

much appreciate your advice in the matter.

With the utmost respect, I remain,

Your

K. Tsiolkovskiy

A period of teaching activity has begun for me and this, though

it takes up only a little of my time, takes up a great deal of my

strength, since I am as interested in the business of teaching as in

my experiments.

In spite of these and other unfavorable circumstances, I am

hopeful of completing all my work by December 1902. Address: Kaluga,

Georgiyevskaya ul., d. Pobedina. K. Tsiolkovskiy.

Archives of the Academy of Sciences USSR

File 38, schedule 2, No. 633, items 6, 7.

APPENDIX ii

Academician M. A. Rykachev's Reply to K. E. Tsiolkovskiy

Director of the NikolayevskayaMain

Physical Observatory,

26 September 1901

Dear Sir,

Copy to :

F_luga,

Ceorgiyevskaya ul., d. Pobedina,

to his excellency

K. Tsiolkovskiy

On returning from an official mission, I found your kind letter
of ! September 1901.

I hasten to reply that in my opinion it is, of course, preferable

i
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to interrupt your experiments in time to prepare a report on what you

have already accomplished. When the report is written_ if you will kind-

ly forward it to me, I am prepared to heed your request to consider

where it might be published

With warm wishes first for your health and then for the

success of your work_ I remain,

Your devoted

Archives of the Academy of Sciences USSR

File 38, schedule 2, No. 633.

M. Rykachev

APPENDIX 12

Letter Written by K. E. Tsiolkovskiy to Academician M. A. Rykachev

Kaluga, 6 March 1902

Your excellency,

Already two and a half months have passed since I had the honor

to present my findings on the resistance of air to the Imperial Academy

of Sciences. I am now beginning to experience some disquiet about the

fate of my report. Immediately after sending it off, I cheerfully began

a series of new experiments However, as time passes, I become more

and more concerned. Forgive me if I bother you prematurely, but please

understand my feelings and my anxious state of mind, which is causing

me to lose heart, and kindly let me know how my report was received or

what recommendations you made concerning it, whether I may expect it to

be published, and whether I may hope for material or at least moral

support from the Imperial Academy of Sciences.

My apartment is crammed absolutely full with my apparatus. I

dream of building an observatory for research into the resistance of

air, where I could keep all my machines, instruments_ and tools for

making models.
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It seemsto methat with even a minimumof support from the
AcademyI could realize my dream (of course, not without my own small
means).

In such an observatory it would be easy to repeat my experi-
ments for any scientists anxious to verify them. It would also be
easy to store models and conduct experiments for an indefinite number
of years, since this is a big project, a very big project, as big as
the ocean ....

It would be impossible to do anything without the help of His
Imperial Highness, the President of the Academy. I believe that much
depends on your opinion of my work. Be assured of my utmost respect.

K. Tsiolkovskly

Address: Kaluga, Girls' Diocesan School, K. Tsiolkovskiy,

Physics Teacher.

Archives of the Academyof Sciences USSR

File 38, schedule 2, No. 633, Items 4, 5.

I
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NOTES*

"Davleniye...

I. This foreword was found in the manuscript. It appears in

print for the first time. 21.

2. Tsiolkovskiy was responsible for the first theoretical and

experimental investigation of the influence of the aspect ratio of a

wing on the aerodynamic forces. It should be noted that this in-

vestigation was carried out as early as 1890-1891, i.e., long before

the development of modern airfoil theory. 28.

"Ob'yasneniya...

3. This article is a supplement to Tsiolkovskiy's "Davleniye

zhidkosti na ravnomerno dvizhushchuyusya v ney ploskost" (The Pres-

sure ...). In this volume it appears in print for the first time.

Here Tsiolkovskiy, developing the hypothesis on which the main article

is based, arrives at the conclusion that in any flow around an ob-

stacle there are really two opposing flows_ which create the circular

motion we actually observe. Thus, his starting hypothesis is again

confirmed. The notion of a return flow beyond an obstacle_ expounded

by Tsiolkovskiy in this article of 1891, determined for many years

the further development of aerodynamics. 30.

"Aeroplan ili...

4. It is worth noting Tsiolkovskiy's original formulation of

the problem of the part played by translational motion in the flight

of heavier-than-air machines. He shows; both theoretically and ex-

perimentally (with the aid of apparatus he himself constructed), that

the work required to keep a flapping-wing machine airborne decreases
with increase in the rate of translational motion. 41.

*The figures that follow each note indicate the [Russian] page to

which it refers.
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5. Tsiolkovskiy was the first in the world to suggest the use

of coaxial airscrews rotating in opposite directions. 44.

6. It is significant that, as the text makes clear, even as

early as 1890-1894 Tsiolkovskiy emerges as a convinced advocate of the

use of gasoline internal combustion engines in flying machines. His

views were undoubtedly progressive at the time and long anticipated

the actual installation of such engines in real aircraft. 44.

7. Here, for the first time, Tsiolkovskiy sketches (in text

and drawings -- Figs. 2-4) a flying machine very similar to our modern

concept of an airplane. Note the following basic features of his

design, which are not found in any previous machine, either proposed

or actually constructed: the fuselage is streamlined_ the wings are

unbraced, cantilevered, and curved in both longitudinal and trans-

verse section, the coaxial airscrews rotate in opposite directions,

and the engines are of the gasoline-powered internal combustion type.

Before this, nobody had ever built or even suggested an airplane of

this kind. Tsiolkovskiy not only put forward a novel idea, he tested

it thoroughly from the point of view of both aerodynamics and struc-

tural strength. All this gives Tsiolkovskiy undoubted priority as

the author of the modern cantilevered-wing monoplane. 44.

8. In these pages Tsiolkovskiy developed various elements of

the aerodynamic design of aircraft for the first time in the litera-

ture of aviation. 45.

9. By P2 the author understands the weight of the engines

needed for motion in the absence of a lift force; PI is the additional

weight of the engines connected with the supplementary drag that de-

velops in the presence of a lift force. 48.

I0. Figs. 3 and 4 are of considerable interest, since here

for the first time Tsiolkovskiy sketches a monoplane with a canti-

levered wing, the thickness of which decreases in the direction from

root to tip (equal strength). Fig. 4 is also of interest in that

here for the first time we find a sketch of an aircraft of the "gull-

wing" type, which, as we know, possesses a number of aerodynamic ad-

vantages. Tsiolkovskiy put forward this idea in 1894, i.e., long

before it was first applied in practice. 52.

ii. Here, for the first time in the literature of aviation,

Tsiolkovskiy suggested using gyroscopes in aircraft as a very simple

automatic pilot. He also proposes a form of automatic electromagnetic
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control system for the rudder. Moreover, it is knownthat he had
previously (in "Aerostat, metallicheskiy, upravlyayemyy" (The Metal
Dirigible) No. 2, Kaluga, 1893) worked out a schemefor the auto-
matic electromagnetic control of dirigibles. These facts estab-
lish Tsiolkovskiy's priority as the founder of aviation electro-
automatics. 73.

"Davleniye vozdukha na...

12. Tsiolkovskiy's bladed "wind machine" (1896-1897) was the

first wind tunnel to be built in Russia.

Tsiolkovskiy also designed measuring apparatus for this ma-

chine and, in particular, an aerodynamic balance of the floating

type characterized, as may be seen from the description, by high

sensitivity and great accuracy. With the aid of his wind tunnel

and measuring apparatus and using an independently developed ex-

perimental technique, Tsiolkovskiy carried out, for the first time

in the history of science, a systematic experimental investigation

of the drag and lift forces acting on bodies of different geometry,

including models of wings and dirigibles. As a result of this in-

vestigation, Tsiolkovskiy established a number of very important laws

of aerodynamics, relating to the influence of the geometrical parame-

ters of a body and the criteria of dynamic similarity on the re-

sistance of the medium. Thus, with perfect justice we may call

Tsiolkovskiy the founder of modern experimental aerodynamics.

Tsiolkovskiy's experimental investigations in the region of

aerodynamics, carried out with the aid of his home-made apparatus,

are described in the present article "Davleniye vozdukha na ... )

and in two later works also to be found in this volume ("Otchet ..."

and "Soprotivleniye ..." ). 91.

13. Here and in the rest of the article the author neglects

the component of the drag acting along the plate. 97.

14. Here Tsiolkovskiy establishes for the first time the

laws of friction for an air medium. Here he is the first to show

experimentally that air friction is in no way proportional to the

area of the surface exposed nor to the square of the flow velocity,

as had previously been supposed. Tsiolkovskiy was able to determine,

with surprising accuracy, the small force exerted by air friction on

the surface of a model. Tsiolkovskiy's remarkable experimental skill

and intuition are also evident in his analysis of the results. Having

selected power laws for the dependence of the friction on the flow
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velocity and the dimensions of the model_ Tsiolkovskiy clearly estab-

lished that in the equation for the coefficient of friction the ve-

locity and the size (length) of the plate have the same exponeDt, as

the theory of dynamic similarity predicts.

The numerical values of the coefficients of friction determined

by Tsiolkovskiy are close to those found considerably later by

boundary layer methods. In modern notation equation (89) is equiva-

lent to the following fonmula:

cf-

T 0.61 0.61

VL
where R = m; the results of computations based on this formula prove

v

to be close to the results obtained from the known equation of bound-

ary layer theory (for laminar flow in the layer):

1.328
I01

"Otchet...

15. Tsiolkovskiy was thus the first to equalize the flow in a
wind tunnel with the aid of a system of oriented baffle plates. 124.

16. Here Tsiolkovskiy establishes for the first time the fact

that holes cut in a plate increase the drag. 137.

17. Sections 45-46, like a number of later sections_ are missing

from Tsiolkovskiy's manuscript. Apparently this is a mistake in number-

ing. 138.

18. Tsiolkovskiy; who had been preoccupied with balloons since



37o

1885, was always interested in the drag of solids of revolution. His

was the first experimental study of streamlined solids of revolution

to establish the relation between the drag of such bodies and their

aspect ratio, their size_ the flow velocity, and other parameters.

The results of this investigation were published partly in "Davleniye

vozdukha na ..." but more fully in the present report.

It is interesting to note that the very term "prodolgovatost'"

(oblongness) used by Tsiolkovskiy conveys the notion better than the

modern term "udlineniye" (elongation, aspect ratio). 143.

19. Here the author neglects the component of the drag acting

along the plate. 147.

20. To Tsiolkovskiy belongs the credit not only for the first

theoretical investigation of the influence of the aspect ratio of a

wing on the aerodynamic forces acting on it but also for the first

thorough experimental investigation of the phenomenon.

In the text Tsiolkovskiy gives the principal results of his

experiments to determine the pressure on plates with different aspect

ratios. It should be noted that he varies the aspect ratio of the

plates within very wide limits and, in particular, also experimented

with plates having small aspect ratios. He was the first to point

out the significance of wings with a low aspect ratio, which_ however,

were not introduced into practice until much later. 152.

21. Here the author neglects the air friction on the lateral

surface of the cylinder. 158.

22. The explanation of this paradoxical effect was first

given by Professor Zhukovskiy who pointed out that the reason for

the higher resistance of a body in a moving medium is the eddies

formed at the solid surfaces confining the fluid (for example, the

walls of a channel). 160 and 137.

23. Here Tsiolkovskiy expounds for the first time certain

elements of the aerodynamic design of aircraft. 184.

24. Tsiolkovskiy's experiments with long cylinders (up to i

meter), arranged with the axis parallel to the flow, enabled him_ as

may be seen from the text, to make considerable improvements in the

relations he had previously derived (in "Davleniye vozdukha na ...)

and to establish the fundamental laws of turbulent friction. 198.
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"Soprotivleniye vozdukha i vozdukhoplavaniye"

25. As already pointed out in the note on page 152, Tsiolkovskiy

was the first to establish the relations between the aspect ratio of a

wing and the forces acting on it. The text gives a compressed version

of Tsiolkovskiy's main conclusions concerning this problem_ reached

as a result of his experiments with his second wind tunnel. 213.

26. Tsiolkovskiy also used the term "davleniye" (pressure)

in the sense of "soprotivleniye" (resistance, drag) and "sila dav-

leniya" (force). Here and throughout the article these three concepts
are differentiated. 214.
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